Artículo
A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables
Fecha de publicación:
12/2012
Editorial:
Elsevier
Revista:
Computers And Geotechnics
ISSN:
0266-352X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Resumen
In this paper a new finite element formulation for numerical analysis of diffused and localized failure behavior of saturated and partially saturated gradient poroplastic materials is proposed. The new finite element includes interpolation functions of first order (C1) for the internal variables field while classical C0 interpolation functions for the kinematic fields and pore pressure. This finite element formulation is compatible with a thermodynamically consistent gradient poroplastic theory previously proposed by the authors. In this material theory the internal variables are the only ones of non-local character. To verify the numerical efficiency of the proposed finite element formulation, the non-local gradient poroplastic constitutive theory is combined with the modified Cam Clay model for partially saturated continua. Thereby, the volumetric strain of the solid skeleton and the plastic porosity are the internal variables of the constitutive theory. The numerical results in this paper demonstrate the capabilities of the proposed finite element formulation to capture diffuse and localized failure modes of boundary value problems of porous media, depending on the acting confining pressure and on the material saturation degree.
Palabras clave:
Gradient Theory
,
Porous Media
,
C1-Continuous Fe
,
Thermodynamic Consistent
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - NOA SUR)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Citación
Mroginski, Javier Luis; Etse, Jose Guillermo; A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables; Elsevier; Computers And Geotechnics; 49; 12-2012; 7-17
Compartir
Altmétricas