Artículo
Lagrangian and orthogonal splittings, quasitriangular Lie bialgebras, and almost complex product structures
Fecha de publicación:
05/2023
Editorial:
American Institute of Physics
Revista:
Journal of Mathematical Physics
ISSN:
0022-2488
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study complex product structures on quadratic vector spaces and on quadratic Lie algebras analyzing the Lagrangian and orthogonal splittings associated with them. We show that a Manin triple equipped with generalized metric G+B such that B is an O-operator with extension G of mass -1 can be turned into another Manin triple that admits also an orthogonal splitting in Lie ideals. Conversely, a quadratic Lie algebra orthogonal direct sum of a pair of anti-isomorphic Lie algebras, following similar steps as in the previous case, can be turned into a Manin triple admitting an orthogonal splitting into Lie ideals.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Montani, Hugo Santos; Lagrangian and orthogonal splittings, quasitriangular Lie bialgebras, and almost complex product structures; American Institute of Physics; Journal of Mathematical Physics; 64; 5; 5-2023; 1-16
Compartir
Altmétricas