Mostrar el registro sencillo del ítem
dc.contributor.author
Pérez, Juan Manuel
dc.contributor.author
Luque, Franco Martín
dc.contributor.author
Zayat, Demian
dc.contributor.author
Kondratzky, Martin
dc.contributor.author
Moro, Agustín
dc.contributor.author
Serrati, Pablo Santiago
dc.contributor.author
Zajac, Joaquin
dc.contributor.author
Miguel, Paula Gabriela
dc.contributor.author
Debandi, Natalia
dc.contributor.author
Gravano, Agustin
dc.contributor.author
Cotik, Viviana Erica
dc.date.available
2023-12-05T14:42:47Z
dc.date.issued
2023-03
dc.identifier.citation
Pérez, Juan Manuel; Luque, Franco Martín; Zayat, Demian; Kondratzky, Martin; Moro, Agustín; et al.; Assessing the Impact of Contextual Information in Hate Speech Detection; Institute of Electrical and Electronics Engineers; IEEE Access; 11; 3-2023; 30575-30590
dc.identifier.issn
2169-3536
dc.identifier.uri
http://hdl.handle.net/11336/219319
dc.description.abstract
Social networks and other digital media deal with huge amounts of user-generated contents where hate speech has become a problematic more and more relevant. A great effort has been made to develop automatic tools for its analysis and moderation, at least in its most threatening forms, such as in violent acts against people and groups protected by law. One limitation of current approaches to automatic hate speech detection is the lack of context. The spotlight on isolated messages, without considering any type of conversational context or even the topic being discussed, severely restricts the available information to determine whether a post on a social network should be tagged as hateful or not. In this work, we assess the impact of adding contextual information to the hate speech detection task. We specifically study a subdomain of Twitter data consisting of replies to digital newspapers posts, which provides a natural environment for contextualized hate speech detection. We built a new corpus in Spanish (Rioplatense variant) focused on hate speech associated to the COVID-19 pandemic, annotated using guidelines carefully designed by our interdisciplinary team. Our classification experiments using state-of-the-art transformer-based machine learning techniques show evidence that adding contextual information improves the performance of hate speech detection for two proposed tasks: binary and multi-label prediction, increasing their Macro F1 by 4.2 and 5.5 points, respectively. These results highlight the importance of using contextual information in hate speech detection. Our code, models, and corpus has been made available for further research.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONTEXTUAL INFORMATION
dc.subject
COVID-19 HATE SPEECH
dc.subject
HATE SPEECH DETECTION
dc.subject
NLP
dc.subject
SPANISH CORPUS
dc.subject
TEXT CLASSIFICATION
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Assessing the Impact of Contextual Information in Hate Speech Detection
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-11-16T13:38:15Z
dc.journal.volume
11
dc.journal.pagination
30575-30590
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Pérez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: Luque, Franco Martín. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Zayat, Demian. Universidad de Buenos Aires. Facultad de Derecho; Argentina
dc.description.fil
Fil: Kondratzky, Martin. Universidad de Buenos Aires. Facultad de Filosofía y Letras; Argentina
dc.description.fil
Fil: Moro, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina
dc.description.fil
Fil: Serrati, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Sociales. Instituto de Investigaciones "Gino Germani"; Argentina
dc.description.fil
Fil: Zajac, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín; Argentina
dc.description.fil
Fil: Miguel, Paula Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Sociales. Instituto de Investigaciones "Gino Germani"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Debandi, Natalia. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Gravano, Agustin. Universidad Torcuato Di Tella. Escuela de Negocios; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Cotik, Viviana Erica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.journal.title
IEEE Access
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10076443
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ACCESS.2023.3258973
Archivos asociados