Mostrar el registro sencillo del ítem

dc.contributor.author
Gatti, Ignacio  
dc.contributor.author
Diaz Pace, Jorge Andres  
dc.contributor.author
Schiaffino, Silvia Noemi  
dc.date.available
2023-12-01T16:25:32Z  
dc.date.issued
2023-11  
dc.identifier.citation
Gatti, Ignacio; Diaz Pace, Jorge Andres; Schiaffino, Silvia Noemi; A hybrid approach for artwork recommendation; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 126; 11-2023; 1-11  
dc.identifier.issn
0952-1976  
dc.identifier.uri
http://hdl.handle.net/11336/219066  
dc.description.abstract
Museums usually exhibit thousands of artworks, and nowadays, they often have their collections online for visitors. In these collections, the curators are responsible for organizing the artworks seeking a delicate balance between emotion and reason. Given an initial artwork, however, a visitor is likely to select and admire a set of related artworks that match her interests. This setting can be seen as a recommendation problem in the art domain. Although image recommendation systems have been previously developed, considering the artwork nature is a fundamental aspect when designing a recommender system in this domain. Thus, we propose a hybrid recommendation approach that combines deep autoencoders with a social influence graph in order to capture the visual aspects and context of artworks (represented by images). These mechanisms inform the generation of rankings of related artworks. In this context, we report on a case-study with a group of art experts who assessed the rankings of artworks recommended by our approach. Although preliminary, the results showed a better precision than traditional strategies based solely on image features or metadata. Furthermore, the recommendations exhibited diversity properties, avoiding typical over-specialization problems of content-based techniques.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTWORK  
dc.subject
DEEP AUTOENCODER  
dc.subject
ONTOLOGY  
dc.subject
RECOMMENDER SYSTEMS  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A hybrid approach for artwork recommendation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-28T14:26:17Z  
dc.journal.volume
126  
dc.journal.pagination
1-11  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Gatti, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
Engineering Applications Of Artificial Intelligence  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S095219762301357X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.engappai.2023.107173