Artículo
Equivalence of solutions for non-homogeneous p(x)-Laplace equationsy
Fecha de publicación:
01/2023
Editorial:
American Institute of Mathematical Sciences
Revista:
Mathematics in Engineering
ISSN:
2640-3501
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We establish the equivalence between weak and viscosity solutions for non-homogeneous p(x)-Laplace equations with a right-hand side term depending on the spatial variable, the unknown, and its gradient. We employ inf- and sup-convolution techniques to state that viscosity solutions are also weak solutions, and comparison principles to prove the converse. The new aspects of the p(x)- Laplacian compared to the constant case are the presence of log-terms and the lack of the invariance under translations.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Medina, Maria; Ochoa, Pablo Daniel; Equivalence of solutions for non-homogeneous p(x)-Laplace equationsy; American Institute of Mathematical Sciences; Mathematics in Engineering; 5; 2; 1-2023; 1-19
Compartir
Altmétricas