Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A methodology to characterize bias and harmful stereotypes in natural language processing in Latin America

Alemany, Laura Alonso; Benotti, LucianaIcon ; Maina, Hernán JavierIcon ; Gonzalez, Lucía; Rajngewerc, MarielaIcon ; Martínez, Lautaro; Sánchez, Jorge; Schilman, Mauro; Ivetta, Guido; Halvorsen, Alexia; Mata Rojo, Amanda; Bordon, Matías; Busaniche, Beatriz
Fecha de publicación: 03/2023
Editorial: Cornell University
Revista: arXiv
ISSN: 2331-8422
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Automated decision-making systems, specially those based on natural language processing, are pervasive in our lives. They are not only behind the internet search engines we use daily, but also take more critical roles: selecting candidates for a job, determining suspects of a crime, diagnosing autism and more. Such automated systems make errors, which may be harmful in many ways, be it because of the severity of the consequences (as in health issues) or because of the sheer number of people they affect. When errors made by an automated system affect a population more than other, we call the system biased.Most modern natural language technologies are based on artifacts obtained from enormous volumes of text using machine learning, namely language models and word embeddings. Since they are created applying subsymbolic machine learning, mostly artificial neural networks, they are opaque and practically uninterpretable by direct inspection, thus making it very difficult to audit them.In this paper we present a methodology that spells out how social scientists, domain experts, and machine learning experts can collaboratively explore biases and harmful stereotypes in word embeddings and large language models. Our methodology is based on the following principles:1. focus on the linguistic manifestations of discrimination on word embeddings and language models, not on the mathematical properties of the models2. reduce the technical barrier for discrimination experts3. characterize through a qualitative exploratory process in addition to ametric-based approach4. address mitigation as part of the training process, not as an after thought.
Palabras clave: Natural Language Processing , Language models , Bias , Stereotypes and Discrimination
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.027Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/218993
URL: https://arxiv.org/abs/2207.06591v3
DOI: https://doi.org/10.48550/arXiv.2207.06591
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Alemany, Laura Alonso; Benotti, Luciana; Maina, Hernán Javier; Gonzalez, Lucía; Rajngewerc, Mariela; et al.; A methodology to characterize bias and harmful stereotypes in natural language processing in Latin America; Cornell University; arXiv; 3-2023; 1-24
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES