Mostrar el registro sencillo del ítem

dc.contributor.author
Nolasco, Miguel Martín  
dc.contributor.author
Ovando, Gustavo  
dc.contributor.author
Sayago, Silvina Beatriz  
dc.contributor.author
Magario, Ivana  
dc.contributor.author
Bocco, Monica  
dc.date.available
2023-12-01T14:40:01Z  
dc.date.issued
2021-01  
dc.identifier.citation
Nolasco, Miguel Martín; Ovando, Gustavo; Sayago, Silvina Beatriz; Magario, Ivana; Bocco, Monica; Estimating soybean yield using time series of anomalies in vegetation indices from MODIS; Taylor & Francis Ltd; International Journal of Remote Sensing; 42; 2; 1-2021; 405-421  
dc.identifier.issn
0143-1161  
dc.identifier.uri
http://hdl.handle.net/11336/218988  
dc.description.abstract
An accurate estimation of soybean yield while the plants are still in the field is highly necessary for industry applications and decision-making policies related to planning. Remote sensing is a powerful tool, due to its spatio-temporal coverage, for developing empirical models to predict and evaluate crop yields at regional and national scales. In Argentina, soybean (Glycine max (L.) Merr.) is the most important crop, particularly in Córdoba province the 89% of the sown area and 88% of the production is concentrated in eleven departments. The objectives of this work were to evaluate the performance of three vegetation indices: Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalized Differential Water Index (NDWI), from Moderate Resolution Imaging Spectroradiometer (MODIS), to explain the anomalies in the soybean yield at department-level in Córdoba, and to develop regressions models for estimate this variable using anomalies of these indices and average crop yield, considering time series of historical records and different sources of data. The results showed that the anomalies of the three vegetation indices fit, with very good precision, the anomalies of soybean yield (Pearson correlation coefficient values from 0.71 to 0.85). The evolution of the NDVI anomalies of mid-season crop development stage, for all periods considered, showed a similar pattern to yield anomalies, particularly differentiating years where droughts or highest soybean yields occurred, independently of data sources used. The regression models estimated soybean yield with NDVI anomalies, obtained prior to harvest, with % RMSE values between 8% and 17%. These simple and versatile models show that using free MODIS data, we can produce reasonable real-time estimates of soybean yield at department-level without previous crop classification.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
NDVI  
dc.subject
EVI  
dc.subject
NDWI  
dc.subject
Soybean  
dc.subject
Regression model  
dc.subject
Córdoba-Argentina  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Estimating soybean yield using time series of anomalies in vegetation indices from MODIS  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-21T11:39:43Z  
dc.identifier.eissn
1366-5901  
dc.journal.volume
42  
dc.journal.number
2  
dc.journal.pagination
405-421  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Nolasco, Miguel Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Área de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina  
dc.description.fil
Fil: Ovando, Gustavo. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina  
dc.description.fil
Fil: Sayago, Silvina Beatriz. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Ingeniería y Mecanización Rural. Cátedra de Matemática; Argentina  
dc.description.fil
Fil: Magario, Ivana. Universidad Nacional de Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada; Argentina  
dc.description.fil
Fil: Bocco, Monica. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Ingeniería y Mecanización Rural. Cátedra de Matemática; Argentina  
dc.journal.title
International Journal of Remote Sensing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01431161.2020.1809736  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01431161.2020.1809736