Mostrar el registro sencillo del ítem
dc.contributor.author
Nolasco, Miguel Martín

dc.contributor.author
Ovando, Gustavo

dc.contributor.author
Sayago, Silvina Beatriz

dc.contributor.author
Magario, Ivana

dc.contributor.author
Bocco, Monica

dc.date.available
2023-12-01T14:40:01Z
dc.date.issued
2021-01
dc.identifier.citation
Nolasco, Miguel Martín; Ovando, Gustavo; Sayago, Silvina Beatriz; Magario, Ivana; Bocco, Monica; Estimating soybean yield using time series of anomalies in vegetation indices from MODIS; Taylor & Francis Ltd; International Journal of Remote Sensing; 42; 2; 1-2021; 405-421
dc.identifier.issn
0143-1161
dc.identifier.uri
http://hdl.handle.net/11336/218988
dc.description.abstract
An accurate estimation of soybean yield while the plants are still in the field is highly necessary for industry applications and decision-making policies related to planning. Remote sensing is a powerful tool, due to its spatio-temporal coverage, for developing empirical models to predict and evaluate crop yields at regional and national scales. In Argentina, soybean (Glycine max (L.) Merr.) is the most important crop, particularly in Córdoba province the 89% of the sown area and 88% of the production is concentrated in eleven departments. The objectives of this work were to evaluate the performance of three vegetation indices: Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalized Differential Water Index (NDWI), from Moderate Resolution Imaging Spectroradiometer (MODIS), to explain the anomalies in the soybean yield at department-level in Córdoba, and to develop regressions models for estimate this variable using anomalies of these indices and average crop yield, considering time series of historical records and different sources of data. The results showed that the anomalies of the three vegetation indices fit, with very good precision, the anomalies of soybean yield (Pearson correlation coefficient values from 0.71 to 0.85). The evolution of the NDVI anomalies of mid-season crop development stage, for all periods considered, showed a similar pattern to yield anomalies, particularly differentiating years where droughts or highest soybean yields occurred, independently of data sources used. The regression models estimated soybean yield with NDVI anomalies, obtained prior to harvest, with % RMSE values between 8% and 17%. These simple and versatile models show that using free MODIS data, we can produce reasonable real-time estimates of soybean yield at department-level without previous crop classification.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis Ltd

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
NDVI
dc.subject
EVI
dc.subject
NDWI
dc.subject
Soybean
dc.subject
Regression model
dc.subject
Córdoba-Argentina
dc.subject.classification
Otras Ciencias Agrícolas

dc.subject.classification
Otras Ciencias Agrícolas

dc.subject.classification
CIENCIAS AGRÍCOLAS

dc.title
Estimating soybean yield using time series of anomalies in vegetation indices from MODIS
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-11-21T11:39:43Z
dc.identifier.eissn
1366-5901
dc.journal.volume
42
dc.journal.number
2
dc.journal.pagination
405-421
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Nolasco, Miguel Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Área de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
dc.description.fil
Fil: Ovando, Gustavo. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
dc.description.fil
Fil: Sayago, Silvina Beatriz. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Ingeniería y Mecanización Rural. Cátedra de Matemática; Argentina
dc.description.fil
Fil: Magario, Ivana. Universidad Nacional de Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada; Argentina
dc.description.fil
Fil: Bocco, Monica. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Ingeniería y Mecanización Rural. Cátedra de Matemática; Argentina
dc.journal.title
International Journal of Remote Sensing

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01431161.2020.1809736
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01431161.2020.1809736
Archivos asociados