Mostrar el registro sencillo del ítem

dc.contributor.author
Campolo, Nicolás  
dc.contributor.author
Mastrogiovanni, Mauricio  
dc.contributor.author
Mariotti, Michele  
dc.contributor.author
Issoglio, Federico Matías  
dc.contributor.author
Estrin, Dario Ariel  
dc.contributor.author
Hägglund, Per  
dc.contributor.author
Grune, Tilman  
dc.contributor.author
Davies, Michael J.  
dc.contributor.author
Bartesaghi, Silvina  
dc.contributor.author
Radi, Rafael  
dc.date.available
2023-12-01T13:13:17Z  
dc.date.issued
2023-03  
dc.identifier.citation
Campolo, Nicolás; Mastrogiovanni, Mauricio; Mariotti, Michele; Issoglio, Federico Matías; Estrin, Dario Ariel; et al.; Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation; American Society for Biochemistry and Molecular Biology; Journal of Biological Chemistry (online); 299; 3; 3-2023; 1-22  
dc.identifier.issn
0021-9258  
dc.identifier.uri
http://hdl.handle.net/11336/218973  
dc.description.abstract
Glutamine synthetase (GS), which catalyzes the ATP-dependent synthesis of L-glutamine from L-glutamate and ammonia, is a ubiquitous and conserved enzyme that plays a pivotal role in nitrogen metabolism across all life domains. In vertebrates, GS is highly expressed in astrocytes, where its activity sustains the glutamate-glutamine cycle at glutamatergic synapses and is thus essential for maintaining brain homeostasis. In fact, decreased GS levels or activity have been associated with neurodegenerative diseases, with these alterations attributed to oxidative post-translational modifications of the protein, in particular tyrosine nitration. In this study, we expressed and purified human GS (HsGS) and performed an in-depth analysis of its oxidative inactivation by peroxynitrite (ONOO−) in vitro. We found that ONOO− exposure led to a dose-dependent loss of HsGS activity, the oxidation of cysteine, methionine, and tyrosine residues and also the nitration of tryptophan and tyrosine residues. Peptide mapping by LC-MS/MS through combined H216O/H218O trypsin digestion identified up to 10 tyrosine nitration sites and five types of dityrosine cross-links; these modifications were further scrutinized by structural analysis. Tyrosine residues 171, 185, 269, 283, and 336 were the main nitration targets; however, tyrosine-to-phenylalanine HsGS mutants revealed that their sole nitration was not responsible for enzyme inactivation. In addition, we observed that ONOO− induced HsGS aggregation and activity loss. Thiol oxidation was a key modification to elicit aggregation, as it was also induced by hydrogen peroxide treatment. Taken together, our results indicate that multiple oxidative events at various sites are responsible for the inactivation and aggregation of human GS.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Society for Biochemistry and Molecular Biology  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
AGGREGATION  
dc.subject
DITYROSINE  
dc.subject
FREE RADICALS  
dc.subject
GLUTAMINE SYNTHETASE  
dc.subject
HYDROGEN PEROXIDE  
dc.subject
NITROTYROSINE  
dc.subject
OXIDANTS  
dc.subject
PEROXYNITRITE  
dc.subject
THIOL OXIDATION  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-29T13:26:21Z  
dc.journal.volume
299  
dc.journal.number
3  
dc.journal.pagination
1-22  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Bethesda  
dc.description.fil
Fil: Campolo, Nicolás. Universidad de la Republica; Uruguay  
dc.description.fil
Fil: Mastrogiovanni, Mauricio. Universidad de la Republica; Uruguay  
dc.description.fil
Fil: Mariotti, Michele. Universidad de Copenhagen; Dinamarca  
dc.description.fil
Fil: Issoglio, Federico Matías. Universidade Nova de Lisboa; Portugal. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina  
dc.description.fil
Fil: Hägglund, Per. Universidad de Copenhagen; Dinamarca  
dc.description.fil
Fil: Grune, Tilman. Universidad de Viena; Austria. German Center for Cardiovascular Research; Alemania. German Institute of Human Nutrition; Alemania  
dc.description.fil
Fil: Davies, Michael J.. Universidad de Copenhagen; Dinamarca  
dc.description.fil
Fil: Bartesaghi, Silvina. Universidad de la Republica; Uruguay  
dc.description.fil
Fil: Radi, Rafael. Universidad de la Republica; Uruguay  
dc.journal.title
Journal of Biological Chemistry (online)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002192582300073X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jbc.2023.102941