Mostrar el registro sencillo del ítem
dc.contributor.author
Kovac, Federico Dario
dc.contributor.author
Levis, Fabián Eduardo
dc.date.available
2023-11-30T13:39:34Z
dc.date.issued
2023-03
dc.identifier.citation
Kovac, Federico Dario; Levis, Fabián Eduardo; Taylor's inequalities in Orlicz–Sobolev type spaces; Wiley VCH Verlag; Mathematische Nachrichten; 296; 3; 3-2023; 1190-1203
dc.identifier.issn
0025-584X
dc.identifier.uri
http://hdl.handle.net/11336/218882
dc.description.abstract
In this paper, we obtain inequalities involving the Taylor polynomial and weak derivatives of a function in an Orlicz–Sobolev type space. Moreover, we show that any such function can be expanded in a finite Taylor series almost everywhere. As a consequence, we prove that the coefficients of any extended best polynomial (Formula presented.) -approximation of a function on a ball almost everywhere converge to the weak derivatives of such a function when the radius tends to 0. Lastly, we get a mean convergence result of such coefficients.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley VCH Verlag
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BEST POLYNOMIAL APPROXIMATION
dc.subject
CONVERGENCE
dc.subject
INEQUALITIES
dc.subject
ORLICZ SPACES
dc.subject
ORLICZ–SOBOLEV SPACES
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Taylor's inequalities in Orlicz–Sobolev type spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-11-29T13:24:22Z
dc.journal.volume
296
dc.journal.number
3
dc.journal.pagination
1190-1203
dc.journal.pais
Alemania
dc.journal.ciudad
Weinheim
dc.description.fil
Fil: Kovac, Federico Dario. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina
dc.description.fil
Fil: Levis, Fabián Eduardo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
dc.journal.title
Mathematische Nachrichten
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1002/mana.202100135
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1002/mana.202100135
Archivos asociados