Mostrar el registro sencillo del ítem
dc.contributor.author
Antunes Días, Rafael
dc.contributor.author
Perin Marcon, Amanda
dc.contributor.author
Batista Kappes, Bruna
dc.contributor.author
Azpiroz, Adrián B.
dc.contributor.author
Gonçalves Barbosa, Fabiana
dc.contributor.author
Bencke, Glayson Ariel
dc.contributor.author
Clay, Robert
dc.contributor.author
Di Giacomo, Adrian Santiago
dc.contributor.author
Suertegaray Fontana, Carla
dc.contributor.author
Repenning, Márcio
dc.contributor.author
Sarquis, Juan Andrés
dc.contributor.author
Areta, Juan Ignacio
dc.date.available
2023-11-29T18:34:43Z
dc.date.issued
2023-11
dc.identifier.citation
Antunes Días, Rafael ; Perin Marcon, Amanda ; Batista Kappes, Bruna ; Azpiroz, Adrián B.; Gonçalves Barbosa, Fabiana; et al.; A new analytical framework for Maxent species distribution models unveils complex spatiotemporal suitability patterns for two migratory seedeaters (Aves: Sporophila) of conservation concern; Elsevier Science; Ecological Informatics; 77; 11-2023; 1-14
dc.identifier.issn
1574-9541
dc.identifier.uri
http://hdl.handle.net/11336/218839
dc.description.abstract
Maxent species distribution models (SDMs) for rare, migratory taxa can be hindered by methodological and analytical issues. To overcome these problems, we developed an analytical framework to build SDMs for key stages of the annual lifecycle of the Marsh Seedeater and the Black-bellied Seedeater, two Neotropical grassland bird species of conservation concern. Occurrence data were compiled from multiple sources and ten environmental variables were used as predictors. We built SDMs with different spatial partitions, feature classes, and regularization multipliers, and devised a procedure to select models with high discrimination ability, low overfitting, statistically significant performance metrics, and high biological realism. From a total of 992 SDMs, 22 fully met the selection criteria for both species. These selected SDMs were equally or less overfit than non-selected ones and were mostly trained with the checkerboard 2 and n − 1 jackknife partitions. For each modeling scenario, we projected and interpreted composite models that emphasized areas of both consensus and divergence across individual predictions, rather than choosing a single model from the set of final SDMs. In the breeding season, areas of highest suitability occurred in restricted, disjunct sectors of the Campos and Pampas grasslands for the Marsh Seedeater and the highland grasslands of southern Brazil for the Black-bellied Seedeater. In the winter, high suitability for the Marsh Seedeater occurred in the western and northern Cerrado and the Pantanal, while in the spring migration, high suitability for the Black-bellied Seedeater was mostly concentrated in the southeastern portion of the Cerrado. The restricted breeding distribution of the Black-bellied Seedeater suggests that its conservation status should be reviewed. Both species shift their climatic niches and track their habitats throughout the year, responding to a few topographic, land-use, and climatic variables that represent different niche components. By addressing major modeling issues in a three-step model selection procedure, we were able to project precise and biologically interpretable SDMs with the level of complexity required for each modeling scenario. Our framework is readily replicable and can be used to unravel intricate spatial suitability patterns of organisms whose distribution undergoes temporal shifts throughout the year.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CITIZEN SCIENCE
dc.subject
MACHINE LEARNING
dc.subject
MIGRATION
dc.subject
SPOROPHILA MELANOGASTER
dc.subject
SPOROPHILA PALUSTRIS
dc.subject
WALLACEAN SHORTFALL
dc.subject.classification
Zoología, Ornitología, Entomología, Etología
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A new analytical framework for Maxent species distribution models unveils complex spatiotemporal suitability patterns for two migratory seedeaters (Aves: Sporophila) of conservation concern
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-11-28T14:43:20Z
dc.journal.volume
77
dc.journal.pagination
1-14
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Antunes Días, Rafael. Universidade Federal de Pelotas; Brasil
dc.description.fil
Fil: Perin Marcon, Amanda. Universidade Federal de Pelotas; Brasil
dc.description.fil
Fil: Batista Kappes, Bruna. Universidade Federal de Pelotas; Brasil
dc.description.fil
Fil: Azpiroz, Adrián B.. Instituto de Investigaciones Biológicas "Clemente Estable"; Uruguay
dc.description.fil
Fil: Gonçalves Barbosa, Fabiana. Universidade Federal do Rio Grande; Brasil
dc.description.fil
Fil: Bencke, Glayson Ariel. Secretaria do Meio Ambiente e Infraestrutura. Museu de Ciências Naturais; Argentina
dc.description.fil
Fil: Clay, Robert. Red Hemisférica de Reservas Para Aves Playeras; Paraguay
dc.description.fil
Fil: Di Giacomo, Adrian Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Centro de Ecología Aplicada del Litoral. Universidad Nacional del Nordeste. Centro de Ecología Aplicada del Litoral; Argentina
dc.description.fil
Fil: Suertegaray Fontana, Carla. Pontificia Universidade Católica do Rio Grande do Sul; Brasil
dc.description.fil
Fil: Repenning, Márcio. Universidade Federal do Rio Grande; Brasil
dc.description.fil
Fil: Sarquis, Juan Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina
dc.description.fil
Fil: Areta, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina
dc.journal.title
Ecological Informatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1574954123002182
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecoinf.2023.102189
Archivos asociados