Mostrar el registro sencillo del ítem

dc.contributor.author
Roscani, Sabrina Dina  
dc.contributor.author
Santillan Marcus, Eduardo Adrian  
dc.date.available
2017-08-04T17:08:54Z  
dc.date.issued
2013-09  
dc.identifier.citation
Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; Two equivalent Stefan’s problems for the time fractional diffusion equation; De Gruyter; Fractional Calculus and Applied Analysis; 16; 4; 9-2013; 802-815  
dc.identifier.issn
1311-0454  
dc.identifier.uri
http://hdl.handle.net/11336/21870  
dc.description.abstract
Two Stefan’s problems for the diffusion fractional equation are solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. The first one has a constant condition on x = 0 and the second presents a flux condition Tx(0, t) = q t α/2. An equivalence between these problems is proved and the convergence to the classical solutions is analyzed when α 1 recovering the heat equation with its respective Stefan’s condition.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
De Gruyter  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Fractionary Stefan'S Problems  
dc.subject
Fractional Diffusion Equation  
dc.subject
Caputo'S Derivative  
dc.subject
Wright Function  
dc.subject.classification
Otras Matemáticas  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Two equivalent Stefan’s problems for the time fractional diffusion equation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-08-04T13:53:33Z  
dc.identifier.eissn
1314-2224  
dc.journal.volume
16  
dc.journal.number
4  
dc.journal.pagination
802-815  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Roscani, Sabrina Dina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Santillan Marcus, Eduardo Adrian. Universidad Austral. Facultad de Ciencias Empresariales; Argentina  
dc.journal.title
Fractional Calculus and Applied Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2478/s13540-013-0050-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/fca.2013.16.issue-4/s13540-013-0050-7/s13540-013-0050-7.xml