Mostrar el registro sencillo del ítem

dc.contributor.author
Larrazabal, Agostina Juliana  
dc.contributor.author
Martínez, César Ernesto  
dc.contributor.author
Glocker, Ben  
dc.contributor.author
Ferrante, Enzo  
dc.date.available
2023-11-23T15:18:50Z  
dc.date.issued
2020-12  
dc.identifier.citation
Larrazabal, Agostina Juliana; Martínez, César Ernesto; Glocker, Ben; Ferrante, Enzo; Post-DAE: Anatomically Plausible Segmentation via Post-Processing with Denoising Autoencoders; Institute of Electrical and Electronics Engineers; IEEE Transaction on Medical Imaging; 39; 12; 12-2020; 3813-3820  
dc.identifier.issn
0278-0062  
dc.identifier.uri
http://hdl.handle.net/11336/218540  
dc.description.abstract
We introduce Post-DAE, a post-processing method based on denoising autoencoders (DAE) to improve the anatomical plausibility of arbitrary biomedical image segmentation algorithms. Some of the most popular segmentation methods (e.g. based on convolutional neural networks or random forest classifiers) incorporate additional post-processing steps to ensure that the resulting masks fulfill expected connectivity constraints. These methods operate under the hypothesis that contiguous pixels with similar aspect should belong to the same class. Even if valid in general, this assumption does not consider more complex priors like topological restrictions or convexity, which cannot be easily incorporated into these methods. Post-DAE leverages the latest developments in manifold learning via denoising autoencoders. First, we learn a compact and non-linear embedding that represents the space of anatomically plausible segmentations. Then, given a segmentation mask obtained with an arbitrary method, we reconstruct its anatomically plausible version by projecting it onto the learnt manifold. The proposed method is trained using unpaired segmentation mask, what makes it independent of intensity information and image modality. We performed experiments in binary and multi-label segmentation of chest X-ray and cardiac magnetic resonance images. We show how erroneous and noisy segmentation masks can be improved using Post-DAE. With almost no additional computation cost, our method brings erroneous segmentations back to a feasible space.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ANATOMICAL SEGMENTATION  
dc.subject
AUTOENCODERS  
dc.subject
CONVOLUTIONAL NEURAL NETWORKS  
dc.subject
LEARNING REPRESENTATIONS  
dc.subject
POST-PROCESSING  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Post-DAE: Anatomically Plausible Segmentation via Post-Processing with Denoising Autoencoders  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-21T11:48:49Z  
dc.journal.volume
39  
dc.journal.number
12  
dc.journal.pagination
3813-3820  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Larrazabal, Agostina Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Martínez, César Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Glocker, Ben. Imperial College London; Reino Unido  
dc.description.fil
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.journal.title
IEEE Transaction on Medical Imaging  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9126830  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TMI.2020.3005297