Mostrar el registro sencillo del ítem

dc.contributor.author
Luppi, Patricio Alfredo  
dc.contributor.author
Rodriguez del Portal, Sair  
dc.contributor.author
Braccia, Lautaro  
dc.contributor.author
Zumoffen, David Alejandro Ramon  
dc.date.available
2023-11-22T16:16:13Z  
dc.date.issued
2022-12  
dc.identifier.citation
Luppi, Patricio Alfredo; Rodriguez del Portal, Sair; Braccia, Lautaro; Zumoffen, David Alejandro Ramon; Plantwide control design using latent variables: An integration between control allocation and a measurement combination approach; Elsevier; Journal of Process Control; 120; 12-2022; 159-176  
dc.identifier.issn
0959-1524  
dc.identifier.uri
http://hdl.handle.net/11336/218505  
dc.description.abstract
This paper presents a plantwide control design methodology based on a novel structure which consists of a decentralized strategy complemented by a control allocation (CA) module and a measurement combination (MC) block. Taking into account a principal components analysis (PCA) selection approach, the CA and MC modules perform a dimensional reduction of the original input–output variable space in order to obtain sets of latent variables (or principal components) as control actions and controlled variables. The use of principal components in the controller design provides several interesting features given that: (i) the conditioning of the subsystem to be controlled can be improved, (ii) when performing combinations of variables, the CA and MC modules act as steady-state decouplers and thus an apparently diagonal process is obtained, which favors the reduction of the variables interaction and the pairing problem is automatically solved, and (iii) they allow to naturally handle nonsquare systems. The proposed design procedure is implemented through a multiobjective bilevel mixed-integer nonlinear programming (BMINLP) optimization problem. The leader problem is based on the minimization of three functional costs: 1- the well-known sum of squared deviations (SSD) index, 2- the number of selected manipulated variables (actuators), and 3- the number of selected measurements (sensors). The inner optimization minimizes the relative gain array number (RGAN). This provides a good trade-off between the degree of conditioning/controllability and the complexity/cost of the resulting system. This problem is efficiently solved through genetic algorithms and allows to perform: (i) the selection of the manipulated variables (actuators) and the measurements (sensors) to be used, (ii) the computation of the matrices that characterize the CA and MC modules, and (iii) the stability analysis of the multivariable control structure. The overall design procedure only requires steady-state models of the process. The Tennessee Eastman case study is considered for the simulation and performance evaluation of the proposed solutions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONTROL ALLOCATION  
dc.subject
LATENT VARIABLES  
dc.subject
MEASUREMENT COMBINATION  
dc.subject
MULTIOBJECTIVE OPTIMIZATION  
dc.subject
PLANTWIDE CONTROL  
dc.subject
PRINCIPAL COMPONENT ANALYSIS  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Plantwide control design using latent variables: An integration between control allocation and a measurement combination approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-15T15:47:14Z  
dc.journal.volume
120  
dc.journal.pagination
159-176  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Luppi, Patricio Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad Nacional de Rosario; Argentina  
dc.description.fil
Fil: Rodriguez del Portal, Sair. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Braccia, Lautaro. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Zumoffen, David Alejandro Ramon. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.journal.title
Journal of Process Control  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0959152422002098  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jprocont.2022.11.007