Mostrar el registro sencillo del ítem
dc.contributor.author
Menni, Matías
dc.date.available
2017-08-03T19:06:47Z
dc.date.issued
2017-08
dc.identifier.citation
Menni, Matías; Every rig with a one-variable fixed point presentation is the burnside rig of a prextensive category; Springer; Applied Categorical Structures; 25; 4; 8-2017; 663-707
dc.identifier.issn
0927-2852
dc.identifier.uri
http://hdl.handle.net/11336/21827
dc.description.abstract
We extend the work of Schanuel, Lawvere, Blass and Gates in Objective Number Theory by proving that, for any L(X) ∈ N[X], the rig N[X]/(X = L(X)) is the Burnside rig of a prextensive category.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Objective Number Theory
dc.subject
Extensive Category
dc.subject
Topos
dc.subject.classification
Otras Matemáticas
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Every rig with a one-variable fixed point presentation is the burnside rig of a prextensive category
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-13T18:17:06Z
dc.journal.volume
25
dc.journal.number
4
dc.journal.pagination
663-707
dc.journal.pais
Países Bajos
dc.journal.ciudad
Dordrecht
dc.description.fil
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina
dc.journal.title
Applied Categorical Structures
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10485-016-9475-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10485-016-9475-6
Archivos asociados