Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network

Prager, Case M.; Classen, Aimee T.; Sundqvist, Maja K.; Barrios Garcia Moar, Maria NoeliaIcon ; Cameron, Erin K.; Chen, Litong; Chisholm, Chelsea; Crowther, Thomas W.; Deslippe, Julie R.; Grigulis, Karl; He, Jin Sheng; Henning, Jeremiah A.; Hovenden, Mark; Høye, Toke T. Thomas; Jing, Xin; Lavorel, Sandra; McLaren, Jennie R.; Metcalfe, Daniel B.; Newman, Gregory S.; Nielsen, Marie Louise; Rixen, Christian; Read, Quentin D.; Rewcastle, Kenna E.; Rodriguez Cabal, Mariano AlbertoIcon ; Wardle, David A.; Wipf, Sonja; Sanders, Nathan J.
Fecha de publicación: 10/2022
Editorial: John Wiley & Sons
Revista: Ecology and Evolution
e-ISSN: 2045-7758
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ecología

Resumen

A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities.
Palabras clave: ALPINE PLANT COMMUNITIES , CLIMATE CHANGE , ELEVATIONAL GRADIENTS , GLOBAL CHANGE , MOUNTAINS , WARMING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 9.619Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/218130
DOI: http://dx.doi.org/10.1002/ece3.9396
URL: https://onlinelibrary.wiley.com/doi/10.1002/ece3.9396
Colecciones
Articulos(INIBIOMA)
Articulos de INST. DE INVEST.EN BIODIVERSIDAD Y MEDIOAMBIENTE
Citación
Prager, Case M.; Classen, Aimee T.; Sundqvist, Maja K.; Barrios Garcia Moar, Maria Noelia; Cameron, Erin K.; et al.; Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network; John Wiley & Sons; Ecology and Evolution; 12; 10; 10-2022; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES