Mostrar el registro sencillo del ítem
dc.contributor.author
Jia, Hao
dc.contributor.author
Feng, Fan
dc.contributor.author
Caiafa, César Federico

dc.contributor.author
Duan, Feng
dc.contributor.author
Zhang, Yu
dc.contributor.author
Sun, Zhe
dc.contributor.author
Sole Casals, Jordi
dc.date.available
2023-11-14T13:15:37Z
dc.date.issued
2023-08
dc.identifier.citation
Jia, Hao; Feng, Fan; Caiafa, César Federico; Duan, Feng; Zhang, Yu; et al.; Multi-class Classification of Upper Limb Movements with Filter Bank Task-related Component Analysis; Institute of Electrical and Electronics Engineers Inc.; IEEE Journal of Biomedical and Health Informatics; 27; 8; 8-2023; 3867-3877
dc.identifier.issn
2168-2194
dc.identifier.uri
http://hdl.handle.net/11336/218006
dc.description.abstract
The classification of limb movements can provide with control commands in non-invasive brain-computer interface. Previous studies on the classification of limb movements have focused on the classification of left/right limbs; however, the classification of different types of upper limb movements has often been ignored despite that it provides more active-evoked control commands in the brain-computer interface. Nevertheless, few machine learning method can be used as the state-of-the-art method in the multi-class classification of limb movements. This work focuses on the multi-class classification of upper limb movements and proposes the multi-class filter bank task-related component analysis (mFBTRCA) method, which consists of three steps: spatial filtering, similarity measuring and filter bank selection. The spatial filter, namely the task-related component analysis, is first used to remove noise from EEG signals. The canonical correlation measures the similarity of the spatial-filtered signals and is used for feature extraction. The correlation features are extracted from multiple low-frequency filter banks. The minimum-redundancy maximum-relevance selects the essential features from all the correlation features, and finally, the support vector machine is used to classify the selected features. The proposed method compared against previously used models is evaluated using two datasets. mFBTRCA achieved a classification accuracy of 0.4193$pm$0.0780 (7 classes) and 0.4032$pm$0.0714 (5 classes), respectively, which improves on the best accuracies achieved using the compared methods (0.3590$pm$0.0645 and 0.3159$pm$0.0736, respectively). The proposed method is expected to provide more control commands in the applications of non-invasive brain-computer interfaces.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers Inc.
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BRAIN-COMPUTER INTERFACE
dc.subject
CORRELATION
dc.subject
ELECTROENCEPHALOGRAM
dc.subject
ELECTROENCEPHALOGRAPHY
dc.subject
FEATURE EXTRACTION
dc.subject
FILTER BANKS
dc.subject
FILTERING
dc.subject
MOVEMENT-RELATED CORTICAL POTENTIAL
dc.subject
PATTERN RECOGNITION
dc.subject
TASK ANALYSIS
dc.subject
UPPER LIMB MOVEMENT
dc.subject
VISUALIZATION
dc.subject.classification
Ciencias de la Información y Bioinformática

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Multi-class Classification of Upper Limb Movements with Filter Bank Task-related Component Analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-11-13T15:50:24Z
dc.identifier.eissn
2168-2208
dc.journal.volume
27
dc.journal.number
8
dc.journal.pagination
3867-3877
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Jia, Hao. Universitat Central de Catalunya. Universitat de Vic; España
dc.description.fil
Fil: Feng, Fan. Nankai University; China
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Duan, Feng. Nankai University; China
dc.description.fil
Fil: Zhang, Yu. Lehigh University; Estados Unidos
dc.description.fil
Fil: Sun, Zhe. Juntendo University; Japón
dc.description.fil
Fil: Sole Casals, Jordi. Universitat Central de Catalunya. Universitat de Vic; España
dc.journal.title
IEEE Journal of Biomedical and Health Informatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/JBHI.2023.3278747
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10135081
Archivos asociados