Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes

Cosa Rodríguez, Pablo; Martí Puig, Pere; Caiafa, César FedericoIcon ; Serra Serra, Moises; Cusidó, Jordi; Solé Casals, Jordi
Fecha de publicación: 02/2023
Editorial: MDPI
Revista: Machines
ISSN: 2075-1702
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería del Petróleo, Energía y Combustibles

Resumen

Product maintenance costs throughout the product’s lifetime can account for between 30–60% of total operating costs, making it necessary to implement maintenance strategies. This problem not only affects the economy but is also related to the impact on the environment, since breakdowns are also responsible for the delivery of greenhouse gases. Industrial maintenance is a set of measures of a technical-organizational nature whose purpose is to sustain the functionality of theequipment and guarantee an optimal state of the machines over time, with the aim of saving costs, extending the useful life of the machines, saving energy, maximising production and availability, ensuring the quality of the product obtained, providing job security for technicians, preserving the environment, and reducing emissions as much as possible. Machine learning techniques can be used to detect or predict faults in wind turbines. However, labelled data suffers from many problems in this application because alarms are usually not clearly associated with a specific fault, some labelsare wrongly associated with a problem, and the imbalance between labels is evident. To avoid using labelled data, we investigate here the use of the clustering technique, more specifically K-means, and boxplot representations of the variables for a set of six different tests. Experimental results show that in some cases, the clustering and boxplot techniques allow us to determine outliers or identify erroneous behaviours of the wind turbines. These cases can then be investigated in detail by a specialist so that more efficient predictive maintenance can be carried out.
Palabras clave: predictive maintenance , prognosis , machine learning , K-means
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.263Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/218002
URL: https://www.mdpi.com/2075-1702/11/2/270/htm
DOI: http://dx.doi.org/10.3390/machines11020270
Colecciones
Articulos(IAR)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
Cosa Rodríguez, Pablo; Martí Puig, Pere; Caiafa, César Federico; Serra Serra, Moises; Cusidó, Jordi; et al.; Exploratory Analysis of SCADA Data from Wind Turbines Using the K-Means Clustering Algorithm for Predictive Maintenance Purposes; MDPI; Machines; 11; 2; 2-2023; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES