Mostrar el registro sencillo del ítem

dc.contributor.author
Sereno Mesa, Juan Esteban  
dc.contributor.author
Anderson, Alejandro Luis  
dc.contributor.author
Ferramosca, Antonio  
dc.contributor.author
Hernandez Vargas, Esteban Abelardo  
dc.contributor.author
González, Alejandro Hernán  
dc.date.available
2023-11-13T12:23:49Z  
dc.date.issued
2022-10  
dc.identifier.citation
Sereno Mesa, Juan Esteban; Anderson, Alejandro Luis; Ferramosca, Antonio; Hernandez Vargas, Esteban Abelardo; González, Alejandro Hernán; Minimizing the epidemic final size while containing the infected peak prevalence in SIR systems; Pergamon-Elsevier Science Ltd; Automatica; 144; 10-2022; 1-8  
dc.identifier.issn
0005-1098  
dc.identifier.uri
http://hdl.handle.net/11336/217846  
dc.description.abstract
Mathematical models are critical to understand the spread of pathogens in a population and evaluate the effectiveness of non-pharmaceutical interventions (NPIs). A plethora of optimal strategies has been recently developed to minimize either the infected peak prevalence (IPP) or the epidemic final size (EFS). While most of them optimize a simple cost function along a fixed finite-time horizon, no consensus has been reached about how to simultaneously handle the IPP and the EFS, while minimizing the intervention's side effects. In this work, based on a new characterization of the dynamical behaviour of SIR-type models under control actions (including the stability of equilibrium sets in terms of herd immunity), we study how to minimize the EFS while keeping the IPP controlled at any time. A procedure is proposed to tailor NPIs by separating transient from stationary control objectives: the potential benefits of the strategy are illustrated by a detailed analysis and simulation results related to the COVID-19 pandemic.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EPIDEMIC FINAL SIZE  
dc.subject
HERD IMMUNITY  
dc.subject
INFECTED PEAK PREVALENCE  
dc.subject
OPTIMAL CONTROL  
dc.subject
SIR MODEL  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Minimizing the epidemic final size while containing the infected peak prevalence in SIR systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-10T14:35:45Z  
dc.journal.volume
144  
dc.journal.pagination
1-8  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Sereno Mesa, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Ferramosca, Antonio. Università Degli Studi Di Bergamo; Italia  
dc.description.fil
Fil: Hernandez Vargas, Esteban Abelardo. Frankfurt Institute For Advanced Studies; Alemania  
dc.description.fil
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.journal.title
Automatica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.automatica.2022.110496