Mostrar el registro sencillo del ítem
dc.contributor.author
Rodríguez, Sergio Antonio

dc.contributor.author
Tran, Jasmine Vy
dc.contributor.author
Sabatino, Spencer J.
dc.contributor.author
Paluch, Andrew S.
dc.date.available
2023-11-09T12:41:39Z
dc.date.issued
2022-09
dc.identifier.citation
Rodríguez, Sergio Antonio; Tran, Jasmine Vy; Sabatino, Spencer J.; Paluch, Andrew S.; Predicting octanol/water partition coefficients and pKa for the SAMPL7 challenge using the SM12, SM8 and SMD solvation models; Springer; Journal of Computer-Aided Molecular Design; 36; 9; 9-2022; 687-705
dc.identifier.issn
0920-654X
dc.identifier.uri
http://hdl.handle.net/11336/217601
dc.description.abstract
Blind predictions of octanol/water partition coefficients and pKa at 298.15 K for 22 drug-like compounds were made for the SAMPL7 challenge. Octanol/water partition coefficients were predicted from solvation free energies computed using electronic structure calculations with the SM12, SM8 and SMD solvation models. Within these calculations we compared the use of gas- and solution-phase optimized geometries of the solute. Based on these calculations we found that in general the use of solution phase-optimized geometries increases the affinity of the solutes for water as compared to octanol, with the use of gas-phase optimized geometries resulting in the better agreement with experiment. The pKa is computed using the direct approach, scaled solvent-accessible surface model, and the inclusion of an explicit water molecule, where the latter two methods have previously been shown to offer improved predictions as compared to the direct approach. We find that the use of an explicit water molecule provides superior predictions, and that the predicted macroscopic pKa is sensitive to the employed microstates.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONTINUUM SOLVENT
dc.subject
DFT
dc.subject
DISTRIBUTION COEFFICIENT
dc.subject
PARTITION COEFFICIENT
dc.subject
PKA
dc.subject
REACTION FREE ENERGY
dc.subject
SAMPL7
dc.subject
SOLVATION FREE ENERGY
dc.subject.classification
Química Orgánica

dc.subject.classification
Ciencias Químicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Predicting octanol/water partition coefficients and pKa for the SAMPL7 challenge using the SM12, SM8 and SMD solvation models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-11-07T14:28:47Z
dc.journal.volume
36
dc.journal.number
9
dc.journal.pagination
687-705
dc.journal.pais
Suiza

dc.description.fil
Fil: Rodríguez, Sergio Antonio. Universidad Nacional de Santiago del Estero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Tran, Jasmine Vy. Miami University; Estados Unidos
dc.description.fil
Fil: Sabatino, Spencer J.. Miami University; Estados Unidos
dc.description.fil
Fil: Paluch, Andrew S.. Miami University; Estados Unidos
dc.journal.title
Journal of Computer-Aided Molecular Design

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10822-022-00474-1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10822-022-00474-1
Archivos asociados