Mostrar el registro sencillo del ítem

dc.contributor.author
Rodríguez, Sergio Antonio  
dc.contributor.author
Tran, Jasmine Vy  
dc.contributor.author
Sabatino, Spencer J.  
dc.contributor.author
Paluch, Andrew S.  
dc.date.available
2023-11-09T12:41:39Z  
dc.date.issued
2022-09  
dc.identifier.citation
Rodríguez, Sergio Antonio; Tran, Jasmine Vy; Sabatino, Spencer J.; Paluch, Andrew S.; Predicting octanol/water partition coefficients and pKa for the SAMPL7 challenge using the SM12, SM8 and SMD solvation models; Springer; Journal of Computer-Aided Molecular Design; 36; 9; 9-2022; 687-705  
dc.identifier.issn
0920-654X  
dc.identifier.uri
http://hdl.handle.net/11336/217601  
dc.description.abstract
Blind predictions of octanol/water partition coefficients and pKa at 298.15 K for 22 drug-like compounds were made for the SAMPL7 challenge. Octanol/water partition coefficients were predicted from solvation free energies computed using electronic structure calculations with the SM12, SM8 and SMD solvation models. Within these calculations we compared the use of gas- and solution-phase optimized geometries of the solute. Based on these calculations we found that in general the use of solution phase-optimized geometries increases the affinity of the solutes for water as compared to octanol, with the use of gas-phase optimized geometries resulting in the better agreement with experiment. The pKa is computed using the direct approach, scaled solvent-accessible surface model, and the inclusion of an explicit water molecule, where the latter two methods have previously been shown to offer improved predictions as compared to the direct approach. We find that the use of an explicit water molecule provides superior predictions, and that the predicted macroscopic pKa is sensitive to the employed microstates.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONTINUUM SOLVENT  
dc.subject
DFT  
dc.subject
DISTRIBUTION COEFFICIENT  
dc.subject
PARTITION COEFFICIENT  
dc.subject
PKA  
dc.subject
REACTION FREE ENERGY  
dc.subject
SAMPL7  
dc.subject
SOLVATION FREE ENERGY  
dc.subject.classification
Química Orgánica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Predicting octanol/water partition coefficients and pKa for the SAMPL7 challenge using the SM12, SM8 and SMD solvation models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-07T14:28:47Z  
dc.journal.volume
36  
dc.journal.number
9  
dc.journal.pagination
687-705  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Rodríguez, Sergio Antonio. Universidad Nacional de Santiago del Estero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Tran, Jasmine Vy. Miami University; Estados Unidos  
dc.description.fil
Fil: Sabatino, Spencer J.. Miami University; Estados Unidos  
dc.description.fil
Fil: Paluch, Andrew S.. Miami University; Estados Unidos  
dc.journal.title
Journal of Computer-Aided Molecular Design  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10822-022-00474-1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10822-022-00474-1