Mostrar el registro sencillo del ítem

dc.contributor.author
Soria, Federico Ariel  
dc.contributor.author
Daldossi, Chiara  
dc.contributor.author
Di Valentin, Cristiana  
dc.date.available
2023-11-08T15:21:03Z  
dc.date.issued
2022-08  
dc.identifier.citation
Soria, Federico Ariel; Daldossi, Chiara; Di Valentin, Cristiana; Tuning the electron injection mechanism by changing the adsorption mode: the case study of Alizarin on TiO2; Elsevier Science; Materials Today Energy; 28; 8-2022; 1-13  
dc.identifier.issn
2468-6069  
dc.identifier.uri
http://hdl.handle.net/11336/217475  
dc.description.abstract
Functionalized titanium dioxide (TiO2) nanoparticles (NPs) with intense fluorescent dyes are a promising tool for several technological applications ranging from photochemistry, photocatalysis, photovoltaics, photodynamic therapy, or bioimaging. Here, we present the case study of Alizarin adsorption on TiO2 NPs of different shapes and increasing size up to 2.2 nm (700 atoms), by means of density functional theory calculations. We find that Alizarin can bind in three different ways, depending on the number and the type of bonds between Alizarin and TiO2: ‘tridented’, ‘bidented’, and ‘chelated’. Next, we investigate the optical properties of these systems by time-dependent density functional theory calculations. Based on the absorption spectra and the Kohn–Sham orbitals analysis, we discovered that the mechanism of electron injection depends on the Alizarin binding mode to the TiO2 surface. While for bidented and chelated adsorption modes, a direct charge transfer is observed; for the tridented one, an indirect mechanism governs the charge transfer process following the excitation. Our results are in good agreement with existing experimental data and suggest that by tailoring the shape of the TiO2 NPs and, thus, determining the type of undercoordinated Ti atoms prevalently exposed at the surface, it is possible to control the predominant injection mechanism.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ALIZARIN DYE  
dc.subject
CHARGE TRANSFER MECHANISM  
dc.subject
SIMULATED ABSORPTION SPECTRA  
dc.subject
TDDFT  
dc.subject
TIO2 NANOPARTICLES  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Tuning the electron injection mechanism by changing the adsorption mode: the case study of Alizarin on TiO2  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-07T14:29:07Z  
dc.journal.volume
28  
dc.journal.pagination
1-13  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Soria, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.description.fil
Fil: Daldossi, Chiara. Università degli Studi di Milano; Italia  
dc.description.fil
Fil: Di Valentin, Cristiana. Università degli Studi di Milano; Italia  
dc.journal.title
Materials Today Energy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.mtener.2022.101085