Artículo
Braided racks, Hurwitz actions and Nichols algebras with many cubic relations
Fecha de publicación:
03/2012
Editorial:
Springer
Revista:
Transformation Groups
ISSN:
1083-4362
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We classify Nichols algebras of irreducible Yetter-Drinfeld modules over groups such that the underlying rack is braided and the homogeneous component of degree three of the Nichols algebra satisfies a given inequality. This assumption turns out to be equivalent to a factorization assumption on the Hilbert series. Besides the known Nichols algebras we obtain a new example. Our method is based on a combinatorial invariant of the Hurwitz orbits with respect to the action of the braid group on three strands.
Palabras clave:
3-TRANSPOSITION GROUP
,
HOPF ALGEBRA
,
HURWITZ ACTION
,
NICHOLS ALGEBRA
,
RACK
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Heckenberger, I.; Lochmann, A.; Vendramin, Claudio Leandro; Braided racks, Hurwitz actions and Nichols algebras with many cubic relations; Springer; Transformation Groups; 17; 1; 3-2012; 157-194
Compartir
Altmétricas