Artículo
Zeta functions of the 3-dimensional almost-Bieberbach groups
Fecha de publicación:
01/2022
Editorial:
De Gruyter
Revista:
Journal Of Group Theory
ISSN:
1433-5883
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The subgroup zeta function and the normal zeta function of a finitely generated virtually nilpotent group can be expressed as finite sums of Dirichlet series admitting Euler product factorization. We compute these series except for a finite number of local factors when the group is virtually nilpotent of Hirsch length 3. We deduce that they can be meromorphically continued to the whole complex plane and that they satisfy local functional equations. The complete computation (with no exception of local factors) is presented for those groups that are also torsion-free, that is, for the 3-dimensional almost-Bieberbach groups.
Palabras clave:
ZETA FUNCTIONS
,
SUBGROUP GROWTH
,
ALMOST-BIEBERBACH GROUPS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Sulca, Diego Armando; Zeta functions of the 3-dimensional almost-Bieberbach groups; De Gruyter; Journal Of Group Theory; 25; 4; 1-2022; 601-678
Compartir
Altmétricas