Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm

Barber, Matias ErnestoIcon ; Bruscantini, Cintia AliciaIcon ; Grings, Francisco MatiasIcon ; Karszenbaum, HaydeeIcon
Fecha de publicación: 10/2016
Editorial: Institute of Electrical and Electronics Engineers
Revista: Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing
ISSN: 1939-1404
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente

Resumen

This paper focused on exploiting remotely sensed active and passive observations over agricultural fields for soil moisture retrieval purposes. Co-polarized backscattering coefficients HH and VV and V-polarized brightness temperature TbV measurements were merged onto a Bayesian algorithm to enhance field-based retrieval estimates. The Bayesian algorithm relies on the use of active SAR to constrain passive information. It is assumed that observations are representative of an extent involving field sizes of about 800 m by 800 m, disregarding the scaling issues between the high resolution SAR pixel and the coarse resolution passive pixel. The integral equation model with multiple scattering at second order (IEM2M) and the ω-τ model were used as forward models for the backscattering coefficients and for the V-polarized brightness temperature, respectively. The Bayesian algorithm was assessed using datasets from the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEx12). Such datasets are representative of contrasting soil conditions since soil moisture spanned almost its whole feasible range from 0.10 to 0.40 cm3/cm3, at different observation geometries with incidence angles ranging from 35° to 55°. Also, the fairly large amount of measurements (97) made the dataset complete for assessment purposes. Soil moisture variability at field scale and dielectric probe error were accounted for in the comparison between retrieved estimates and in situ measurements. Performance metrics were used to quantify the agreement of the retrieval methodology to in situ information, and to assess the improvement in the combined methodology with respect to the single ones (active or passive). Overall, the root mean squared error (RMSE) showed an improvement from 0.08 to 0.11 cm3/cm3 (only active) or 0.03-0.12 cm3/cm3 (only passive, after bias correction) to 0.06-0.10 cm3/cm3 (combined), thus, demonstrating the potential of such combined soil moisture estimates. When analyzed each field separately, RMSE is less than 0.07 cm3/cm3 and correlation coefficient r is greater than 0.6 for most of the fields.
Palabras clave: Bayes Procedures , Inverse Problems , Moisture , Radar Applications , Remote Sensing , Rough Surfaces , Soil Measurements , Synthetic Aperture Radar (Sar)
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.186Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/21734
DOI: http://dx.doi.org/10.1109/JSTARS.2016.2611491
URL: http://ieeexplore.ieee.org/document/7583692/
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Citación
Barber, Matias Ernesto; Bruscantini, Cintia Alicia; Grings, Francisco Matias; Karszenbaum, Haydee; Bayesian Combined Active/Passive (B-CAP) Soil Moisture Retrieval Algorithm; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing; 9; 12; 10-2016; 5449-5460
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES