Mostrar el registro sencillo del ítem
dc.contributor.author
Kontorovsky, Natalia Lucía
dc.contributor.author
Giambiagi Ferrari, Carlo
dc.contributor.author
Pinasco, Juan Pablo
dc.contributor.author
Saintier, Nicolas Bernard Claude
dc.date.available
2023-11-07T13:06:57Z
dc.date.issued
2022-09
dc.identifier.citation
Kontorovsky, Natalia Lucía; Giambiagi Ferrari, Carlo; Pinasco, Juan Pablo; Saintier, Nicolas Bernard Claude; Kinetic modeling of coupled epidemic and behavior dynamics: The social impact of public policies; World Scientific; Mathematical Models And Methods In Applied Sciences; 32; 10; 9-2022; 2037-2076
dc.identifier.issn
0218-2025
dc.identifier.uri
http://hdl.handle.net/11336/217296
dc.description.abstract
We study the propagation of a disease in a population where agents are characterized by their awareness level, representing the measures they take to avoid the infection. We introduce another agent, the government, which is constantly sending a message to the population trying to steer the mean awareness to a value which should ensure the extinction of the disease. We propose three levels to analyze this model. First, an agent-based model, which we use later to derive a mean-field system of ordinary differential equations; and finally, we propose a kinetic approach to model the evolution of the distribution of agents on the awareness levels. We obtain nonlinear systems of different dimension, first an ODE-Boltzmann system and later an ODEs-PDE system, where a Boltzmann or a first order, non-local partial differential equation are coupled with two ordinary differential equations that describe the evolution of the epidemic and the response of the government. We prove the existence and uniqueness of solutions in an abstract setting. Finally, we consider stubborn agents that are not willing to apply protection measures.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
World Scientific
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
EPIDEMIOLOGY
dc.subject
KINETIC EQUATIONS
dc.subject
OPINION DYNAMICS
dc.subject
SIS MODEL
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Kinetic modeling of coupled epidemic and behavior dynamics: The social impact of public policies
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-11-07T11:37:13Z
dc.journal.volume
32
dc.journal.number
10
dc.journal.pagination
2037-2076
dc.journal.pais
Singapur
dc.description.fil
Fil: Kontorovsky, Natalia Lucía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.description.fil
Fil: Giambiagi Ferrari, Carlo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Mathematical Models And Methods In Applied Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/10.1142/S0218202522500488
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S0218202522500488
Archivos asociados