Mostrar el registro sencillo del ítem
dc.contributor.author
Godoy, José Luis
dc.contributor.author
Schierloh, R. M.
dc.date.available
2023-11-06T17:57:22Z
dc.date.issued
2022-07
dc.identifier.citation
Godoy, José Luis; Schierloh, R. M.; Predictive management of the hybrid generation dispatch and the dispatchable demand response in microgrids with heating, ventilation, and air-conditioning (HVAC) systems; Elsevier; Sustainable Energy, Grids and Networks; 32; 7-2022; 100857-100870
dc.identifier.issn
2352-4677
dc.identifier.uri
http://hdl.handle.net/11336/217225
dc.description.abstract
Heating, ventilation, and air-conditioning (HVAC) systems are considered essential technologies for modern human life for many different purposes, such as providing human comfort or increasing agricultural production. However, the energy consumption of HVAC systems is very high, and usually leads to peak power demand issues that require adequate mitigation measures to ensure grid stability and not to exceed the maximum power demand allowed. In this work, a model predictive control (MPC) scheme is proposed for the joint management of hybrid generation dispatch and dispatchable demand response of HVAC systems in microgrids. The energy generation, the storage devices, and the controllable loads are managed simultaneously to improve the performance of the microgrids without losing thermal comfort. Demand response strategies are applied explicitly (constraining controllable loads) and implicitly (optimizing system operation by means of its thermal inertia). This simple MPC scheme is based on linear parameter-varying (LPV) modeling for HVAC system and battery bank, and rough predictions for external temperature, renewable generation and non-dispatchable demand. As MPC tolerates large plant-model mismatches, simple forecasting models are suitable for the required rough predictions. The LPV model scheduling signals are forecast to predict the time variable parameters and thus improve feedback and feedforward control. Viable MPC formulations for embedded processors are derived for off-grid and grid-connected operation. The developed scheme is applied to two case studies of interest in Argentina, an automated poultry farm (isolated from the grid), and a health facility (connected to the grid) with an expensive bill due to penalties. The simulation results demonstrate the effectiveness and the economic benefit of the management strategies proposed. Indeed, the isolated case provided 55% fuel saving and better use of the resources compared to the conventional rule-based controller. Furthermore, the connected case provided 26% monthly bill saving and 750% investment saving.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BATTERIES
dc.subject
DISTURBANCE FORECASTING
dc.subject
ENERGY MANAGEMENT
dc.subject
HVAC CONTROL
dc.subject
MODEL PREDICTIVE CONTROL
dc.subject
PHOTOVOLTAICS
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Predictive management of the hybrid generation dispatch and the dispatchable demand response in microgrids with heating, ventilation, and air-conditioning (HVAC) systems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-11-06T15:31:19Z
dc.journal.volume
32
dc.journal.pagination
100857-100870
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Godoy, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: Schierloh, R. M.. Universidad Tecnológica Nacional; Argentina
dc.journal.title
Sustainable Energy, Grids and Networks
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.segan.2022.100857
Archivos asociados