Mostrar el registro sencillo del ítem
dc.contributor.author
Bangle, Rachel E.
dc.contributor.author
Schneider, Jenny
dc.contributor.author
Conroy, Daniel T.
dc.contributor.author
Aramburu Troselj, Bruno Martín
dc.contributor.author
Meyer, Gerald J.
dc.date.available
2023-11-06T15:05:07Z
dc.date.issued
2020-09
dc.identifier.citation
Bangle, Rachel E.; Schneider, Jenny; Conroy, Daniel T.; Aramburu Troselj, Bruno Martín; Meyer, Gerald J.; Kinetic evidence that the solvent barrier for electron transfer is absent in the electric double layer; American Chemical Society; Journal of the American Chemical Society; 142; 35; 9-2020; 14940-14946
dc.identifier.issn
0002-7863
dc.identifier.uri
http://hdl.handle.net/11336/217176
dc.description.abstract
Classical capacitance studies have revealed that the first layer of water present at an aqueous metal-electrolyte interface has a dielectric constant less than 1/10th of that of bulk water. Modern theory indicates that the barrier for electron transfer will decrease substantially in this layer; yet, this important prediction has not been tested experimentally. Here, we report the interfacial electron transfer kinetics for molecules positioned at variable distances within the electric double layer of a transparent conductive oxide as a function of the Gibbs free energy change. The data indicate that the solvent reorganization is indeed near zero and increases to bulk values only when the molecules are positioned greater than 15 Å from the conductive electrode. Consistent with this conclusion, lateral intermolecular electron transfer, parallel to a semiconducting oxide electrode, was shown to be more rapid when the molecules were within the electric double layer. The results provide much needed feedback for theoretical studies and also indicate a huge kinetic advantage for aqueous electron transfer and redox catalysis that takes place proximate to a solid interface.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Charge transfer
dc.subject
Oxides
dc.subject
Molecules
dc.subject
Electrodes
dc.subject
Kinetics
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Kinetic evidence that the solvent barrier for electron transfer is absent in the electric double layer
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-11-06T09:48:07Z
dc.journal.volume
142
dc.journal.number
35
dc.journal.pagination
14940-14946
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Bangle, Rachel E.. University of North Carolina; Estados Unidos
dc.description.fil
Fil: Schneider, Jenny. University of North Carolina; Estados Unidos
dc.description.fil
Fil: Conroy, Daniel T.. University of North Carolina; Estados Unidos
dc.description.fil
Fil: Aramburu Troselj, Bruno Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.description.fil
Fil: Meyer, Gerald J.. University of North Carolina; Estados Unidos
dc.journal.title
Journal of the American Chemical Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/jacs.0c05226
Archivos asociados