Mostrar el registro sencillo del ítem

dc.contributor.author
Bangle, Rachel E.  
dc.contributor.author
Schneider, Jenny  
dc.contributor.author
Conroy, Daniel T.  
dc.contributor.author
Aramburu Troselj, Bruno Martín  
dc.contributor.author
Meyer, Gerald J.  
dc.date.available
2023-11-06T15:05:07Z  
dc.date.issued
2020-09  
dc.identifier.citation
Bangle, Rachel E.; Schneider, Jenny; Conroy, Daniel T.; Aramburu Troselj, Bruno Martín; Meyer, Gerald J.; Kinetic evidence that the solvent barrier for electron transfer is absent in the electric double layer; American Chemical Society; Journal of the American Chemical Society; 142; 35; 9-2020; 14940-14946  
dc.identifier.issn
0002-7863  
dc.identifier.uri
http://hdl.handle.net/11336/217176  
dc.description.abstract
Classical capacitance studies have revealed that the first layer of water present at an aqueous metal-electrolyte interface has a dielectric constant less than 1/10th of that of bulk water. Modern theory indicates that the barrier for electron transfer will decrease substantially in this layer; yet, this important prediction has not been tested experimentally. Here, we report the interfacial electron transfer kinetics for molecules positioned at variable distances within the electric double layer of a transparent conductive oxide as a function of the Gibbs free energy change. The data indicate that the solvent reorganization is indeed near zero and increases to bulk values only when the molecules are positioned greater than 15 Å from the conductive electrode. Consistent with this conclusion, lateral intermolecular electron transfer, parallel to a semiconducting oxide electrode, was shown to be more rapid when the molecules were within the electric double layer. The results provide much needed feedback for theoretical studies and also indicate a huge kinetic advantage for aqueous electron transfer and redox catalysis that takes place proximate to a solid interface.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Charge transfer  
dc.subject
Oxides  
dc.subject
Molecules  
dc.subject
Electrodes  
dc.subject
Kinetics  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Kinetic evidence that the solvent barrier for electron transfer is absent in the electric double layer  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-06T09:48:07Z  
dc.journal.volume
142  
dc.journal.number
35  
dc.journal.pagination
14940-14946  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Bangle, Rachel E.. University of North Carolina; Estados Unidos  
dc.description.fil
Fil: Schneider, Jenny. University of North Carolina; Estados Unidos  
dc.description.fil
Fil: Conroy, Daniel T.. University of North Carolina; Estados Unidos  
dc.description.fil
Fil: Aramburu Troselj, Bruno Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Meyer, Gerald J.. University of North Carolina; Estados Unidos  
dc.journal.title
Journal of the American Chemical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/jacs.0c05226