Mostrar el registro sencillo del ítem
dc.contributor.author
Jia, Hao
dc.contributor.author
Sun, Zhe
dc.contributor.author
Duan, Feng
dc.contributor.author
Zhang, Yu
dc.contributor.author
Caiafa, César Federico
dc.contributor.author
Solé Casals, Jordi
dc.date.available
2023-11-06T14:35:42Z
dc.date.issued
2022-10
dc.identifier.citation
Jia, Hao; Sun, Zhe; Duan, Feng; Zhang, Yu; Caiafa, César Federico; et al.; Improving pre-movement pattern detection with filter bank selection; IOP Publishing; Journal of Neural Engineering; 19; 6; 10-2022; 1-46
dc.identifier.issn
1741-2560
dc.identifier.uri
http://hdl.handle.net/11336/217142
dc.description.abstract
Objective. Pre-movement decoding plays an important role in detecting the onsets of actions using low-frequency electroencephalography (EEG) signals before the movement of an upper limb. In this work, a binary classification method is proposed between two different states. Approach. The proposed method, referred to as filter bank standard task-related component analysis (FBTRCA), is to incorporate filter bank selection into the standard task-related component analysis (STRCA) method. In FBTRCA, the EEG signals are first divided into multiple sub-bands which start at specific fixed frequencies and end frequencies that follow in an arithmetic sequence. The STRCA method is then applied to the EEG signals in these bands to extract CCPs. The minimum redundancy maximum relevance feature selection method is used to select essential features from these correlation patterns in all sub-bands. Finally, the selected features are classified using the binary support vector machine classifier. A convolutional neural network (CNN) is an alternative approach to select canonical correlation patterns. Main Results. Three methods were evaluated using EEG signals in the time window from 2 s before the movement onset to 1 s after the movement onset. In the binary classification between a movement state and the resting state, the FBTRCA achieved an average accuracy of 0.8968 ± 0.0847 while the accuracies of STRCA and CNN were 0.8228 ± 0.1149 and 0.8828 ± 0.0917, respectively. In the binary classification between two actions, the accuracies of STRCA, CNN, and FBTRCA were 0.6611 ± 0.1432, 0.6993 ± 0.1271, 0.7178 ± 0.1274, respectively. Feature selection using filter banks, as in FBTRCA, produces comparable results to STRCA. Significance. The proposed method provides a way to select filter banks in pre-movement decoding, and thus it improves the classification performance. The improved pre-movement decoding of single upper limb movements is expected to provide people with severe motor disabilities with a more natural, non-invasive control of their external devices.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BRAIN COMPUTER INTERFACE
dc.subject
FILTER BANK SELECTION
dc.subject
MOVEMENT DETECTION
dc.subject
PRE-MOVEMENT DECODING
dc.subject
STANDARD TASK-RELATED COMPONENT ANALYSIS
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Improving pre-movement pattern detection with filter bank selection
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-11-01T15:34:58Z
dc.identifier.eissn
1741-2552
dc.journal.volume
19
dc.journal.number
6
dc.journal.pagination
1-46
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Jia, Hao. Universitat de Vic - Universitat Central de Catalunya; España
dc.description.fil
Fil: Sun, Zhe. Riken; Japón
dc.description.fil
Fil: Duan, Feng. Nankai University; Japón
dc.description.fil
Fil: Zhang, Yu. Lehigh University; Estados Unidos
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Solé Casals, Jordi. Universitat de Vic - Universitat Central de Catalunya; España. University of Cambridge; Reino Unido
dc.journal.title
Journal of Neural Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1088/1741-2552/ac9e75
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1741-2552/ac9e75
Archivos asociados