Mostrar el registro sencillo del ítem

dc.contributor.author
Jia, Hao  
dc.contributor.author
Sun, Zhe  
dc.contributor.author
Duan, Feng  
dc.contributor.author
Zhang, Yu  
dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Solé Casals, Jordi  
dc.date.available
2023-11-06T14:35:42Z  
dc.date.issued
2022-10  
dc.identifier.citation
Jia, Hao; Sun, Zhe; Duan, Feng; Zhang, Yu; Caiafa, César Federico; et al.; Improving pre-movement pattern detection with filter bank selection; IOP Publishing; Journal of Neural Engineering; 19; 6; 10-2022; 1-46  
dc.identifier.issn
1741-2560  
dc.identifier.uri
http://hdl.handle.net/11336/217142  
dc.description.abstract
Objective. Pre-movement decoding plays an important role in detecting the onsets of actions using low-frequency electroencephalography (EEG) signals before the movement of an upper limb. In this work, a binary classification method is proposed between two different states. Approach. The proposed method, referred to as filter bank standard task-related component analysis (FBTRCA), is to incorporate filter bank selection into the standard task-related component analysis (STRCA) method. In FBTRCA, the EEG signals are first divided into multiple sub-bands which start at specific fixed frequencies and end frequencies that follow in an arithmetic sequence. The STRCA method is then applied to the EEG signals in these bands to extract CCPs. The minimum redundancy maximum relevance feature selection method is used to select essential features from these correlation patterns in all sub-bands. Finally, the selected features are classified using the binary support vector machine classifier. A convolutional neural network (CNN) is an alternative approach to select canonical correlation patterns. Main Results. Three methods were evaluated using EEG signals in the time window from 2 s before the movement onset to 1 s after the movement onset. In the binary classification between a movement state and the resting state, the FBTRCA achieved an average accuracy of 0.8968 ± 0.0847 while the accuracies of STRCA and CNN were 0.8228 ± 0.1149 and 0.8828 ± 0.0917, respectively. In the binary classification between two actions, the accuracies of STRCA, CNN, and FBTRCA were 0.6611 ± 0.1432, 0.6993 ± 0.1271, 0.7178 ± 0.1274, respectively. Feature selection using filter banks, as in FBTRCA, produces comparable results to STRCA. Significance. The proposed method provides a way to select filter banks in pre-movement decoding, and thus it improves the classification performance. The improved pre-movement decoding of single upper limb movements is expected to provide people with severe motor disabilities with a more natural, non-invasive control of their external devices.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BRAIN COMPUTER INTERFACE  
dc.subject
FILTER BANK SELECTION  
dc.subject
MOVEMENT DETECTION  
dc.subject
PRE-MOVEMENT DECODING  
dc.subject
STANDARD TASK-RELATED COMPONENT ANALYSIS  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Improving pre-movement pattern detection with filter bank selection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-01T15:34:58Z  
dc.identifier.eissn
1741-2552  
dc.journal.volume
19  
dc.journal.number
6  
dc.journal.pagination
1-46  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Jia, Hao. Universitat de Vic - Universitat Central de Catalunya; España  
dc.description.fil
Fil: Sun, Zhe. Riken; Japón  
dc.description.fil
Fil: Duan, Feng. Nankai University; Japón  
dc.description.fil
Fil: Zhang, Yu. Lehigh University; Estados Unidos  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Solé Casals, Jordi. Universitat de Vic - Universitat Central de Catalunya; España. University of Cambridge; Reino Unido  
dc.journal.title
Journal of Neural Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1088/1741-2552/ac9e75  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1741-2552/ac9e75