Artículo
Computational approaches to explainable artificial intelligence: advances in theory, applications and trends
Górriz, J. M.; Álvarez Illán, I.; Álvarez Marquina, A.; Arco, J. E.; Atzmueller, M.; Ballarini, Fabricio Matias
; Barakova, E.; Bologna, G.; Bonomini, Maria Paula
; Castellanos Dominguez, G.; Castillo Barnes, D.; Cho, S. B.; Contreras, R.; Cuadra, J. M.; Domínguez, E.; Domínguez Mateos, F.; Duro, R. J.; Elizondo, D.; Fernández Caballero, A.; Fernández Jover, Eduardo; Formoso, M. A.; Gallego Molina, N. J.; Gamazo, J.; García González, J.; Garcia Rodriguez, J.; Wang, W.; Zhang, Y. D.; Zhu, H.; Zhu, Z.; Ferrández Vicente, J. M.
Fecha de publicación:
12/2023
Editorial:
Elsevier Science
Revista:
Information Fusion
ISSN:
1566-2535
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated humanlevel performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Górriz, J. M.; Álvarez Illán, I.; Álvarez Marquina, A.; Arco, J. E.; Atzmueller, M.; et al.; Computational approaches to explainable artificial intelligence: advances in theory, applications and trends; Elsevier Science; Information Fusion; 100; 101945; 12-2023; 1-37
Compartir
Altmétricas