Mostrar el registro sencillo del ítem

dc.contributor.author
Amherdt, Sebastián  
dc.contributor.author
Di Leo, Néstor Cristian  
dc.contributor.author
Pereira, Ayelen  
dc.contributor.author
Cornero, Cecilia  
dc.contributor.author
Pacino, Maria Cristina  
dc.date.available
2023-11-03T15:46:22Z  
dc.date.issued
2022-11  
dc.identifier.citation
Amherdt, Sebastián; Di Leo, Néstor Cristian; Pereira, Ayelen; Cornero, Cecilia; Pacino, Maria Cristina; Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series; Taylor & Francis; Geocarto International; 11-2022; 1-23  
dc.identifier.issn
1010-6049  
dc.identifier.uri
http://hdl.handle.net/11336/216964  
dc.description.abstract
This work aims to evaluate the added value of interferometric coherence to backscatter information of Synthetic Aperture Radar (SAR) systems for soybean and corn mapping. First, SAR response to crop growth, and then accuracies for the classification using a combination of SAR variables were evaluated for scenarios that employ in-season or the entire season time series. Results showed that: i) using a single feature, the backscatter at vertical-horizontal (VH) polarization would be the most suitable variable; ii) the complementarity of coherence to single backscatter at vertical-vertical (VV) polarization was demonstrated, adding a significant contribution to late sown corns differentiation and iii) the combination of VV and VH backscatter would be the preferable variables for the proposed classification. In this case, the adding of coherence did not show a significant accuracy improvement, while a high computational cost is required. Finally, high general accuracies (until 90%) for early-season maps were achieved.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CROP MAPPING  
dc.subject
INSAR COHERENCE  
dc.subject
SAR TIME SERIES  
dc.subject.classification
Geociencias multidisciplinaria  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-02T14:38:26Z  
dc.journal.pagination
1-23  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Amherdt, Sebastián. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.description.fil
Fil: Di Leo, Néstor Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; Argentina  
dc.description.fil
Fil: Pereira, Ayelen. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.description.fil
Fil: Cornero, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina  
dc.description.fil
Fil: Pacino, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina  
dc.journal.title
Geocarto International  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/10106049.2022.2144472