Mostrar el registro sencillo del ítem
dc.contributor.author
Amherdt, Sebastián
dc.contributor.author
Di Leo, Néstor Cristian
dc.contributor.author
Pereira, Ayelen
dc.contributor.author
Cornero, Cecilia
dc.contributor.author
Pacino, Maria Cristina
dc.date.available
2023-11-03T15:46:22Z
dc.date.issued
2022-11
dc.identifier.citation
Amherdt, Sebastián; Di Leo, Néstor Cristian; Pereira, Ayelen; Cornero, Cecilia; Pacino, Maria Cristina; Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series; Taylor & Francis; Geocarto International; 11-2022; 1-23
dc.identifier.issn
1010-6049
dc.identifier.uri
http://hdl.handle.net/11336/216964
dc.description.abstract
This work aims to evaluate the added value of interferometric coherence to backscatter information of Synthetic Aperture Radar (SAR) systems for soybean and corn mapping. First, SAR response to crop growth, and then accuracies for the classification using a combination of SAR variables were evaluated for scenarios that employ in-season or the entire season time series. Results showed that: i) using a single feature, the backscatter at vertical-horizontal (VH) polarization would be the most suitable variable; ii) the complementarity of coherence to single backscatter at vertical-vertical (VV) polarization was demonstrated, adding a significant contribution to late sown corns differentiation and iii) the combination of VV and VH backscatter would be the preferable variables for the proposed classification. In this case, the adding of coherence did not show a significant accuracy improvement, while a high computational cost is required. Finally, high general accuracies (until 90%) for early-season maps were achieved.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CROP MAPPING
dc.subject
INSAR COHERENCE
dc.subject
SAR TIME SERIES
dc.subject.classification
Geociencias multidisciplinaria
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-11-02T14:38:26Z
dc.journal.pagination
1-23
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Amherdt, Sebastián. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
dc.description.fil
Fil: Di Leo, Néstor Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; Argentina
dc.description.fil
Fil: Pereira, Ayelen. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
dc.description.fil
Fil: Cornero, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
dc.description.fil
Fil: Pacino, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
dc.journal.title
Geocarto International
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/10106049.2022.2144472
Archivos asociados