Mostrar el registro sencillo del ítem
dc.contributor.author
Capriotti, Santiago
dc.contributor.author
Montani, Hugo Santos
dc.date.available
2017-07-31T22:45:30Z
dc.date.issued
2014-05
dc.identifier.citation
Capriotti, Santiago; Montani, Hugo Santos; Integrable systems on semidirect product Lie groups; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 206; 5-2014; 1-23
dc.identifier.issn
1751-8113
dc.identifier.uri
http://hdl.handle.net/11336/21691
dc.description.abstract
We study integrable systems on the semidirect product of a Lie group and its Lie algebra as the representation space of the adjoint action. Regarding the tangent bundle of a Lie group as phase space endowed with this semidirect product Lie group structure, we construct a class of symplectic submanifolds equipped with a Dirac bracket on which integrable systems (in the Adler–Kostant–Symes sense) are naturally built through collective dynamics. In doing so, we address other issues such as factorization, Poisson–Lie structures and dressing actions. We show that the procedure becomes recursive for some particular Hamilton functions, giving rise to a tower of nested integrable systems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Integrable Systems
dc.subject
Adler–Kostant–Symes Method
dc.subject
Semidirect Product Lie Algebras
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Integrable systems on semidirect product Lie groups
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-31T21:44:12Z
dc.journal.volume
47
dc.journal.number
206
dc.journal.pagination
1-23
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Capriotti, Santiago. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Montani, Hugo Santos. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal of Physics A: Mathematical and Theoretical
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/47/20/205206/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1751-8113/47/20/205206
Archivos asociados