Mostrar el registro sencillo del ítem

dc.contributor.author
Pastorino, Claudio  
dc.contributor.author
Urrutia, Ignacio  
dc.contributor.author
Fiora, María  
dc.contributor.author
Condado, Federico  
dc.date.available
2023-11-02T15:32:25Z  
dc.date.issued
2022-06  
dc.identifier.citation
Pastorino, Claudio; Urrutia, Ignacio; Fiora, María; Condado, Federico; Heat flow through a liquid-vapor interface in a nano-channel: The effect of end-grafting polymers on a wall; IOP Publishing; Journal of Physics: Condensed Matter; 34; 34; 6-2022; 344004-344018  
dc.identifier.issn
0953-8984  
dc.identifier.uri
http://hdl.handle.net/11336/216871  
dc.description.abstract
Heat transfer through a liquid-vapor interface is a complex phenomenon and crucially relevant in heat-removal and cryogenic applications. The physical coupling among confining walls, liquid and vapor phases is very important for controlling or improving cooling rates or condensation efficiency. Surface modification is a promising route, which has been explored to taylor the heat transfer through confined two-phase systems. We use coarse-grained molecular-dynamics simulations to study the heat transfer through a nano-confined liquid-vapor interface as a function of fluid filling. We set up a stationary heat flow through a liquid-vapor interface, stabilized with the liquid in contact with a colder wall and a vapor in contact with a hotter wall. For these physical conditions, we perform extensive simulations by progressively increasing the number of fluid particles, i.e. the channel filling, and measure the fluid distribution in the channel, density, pressure and temperature profiles We also compare the heat flux behavior between a bare-surfaces nano-channel and others where the hot surface was coated with end-grafted polymers, with different wetting affinities and bending properties. We take extreme cases of polymer properties to obtain a general picture of the polymer effect on the heat transfer, as compared with the bare surfaces. We find that walls covered by end-grafted solvophylic polymers change the heat flux by a factor of 6, as compared with bare walls, if the liquid phase is in contact with the polymers. Once the liquid wets the coated wall, the improve on heat flux is smaller and dominated by the grafting density. We also find that for a wall coated with stiff polymers, the jump in heat flux takes place at a significantly lower channel filling, when the polymers' free ends interact with the liquid surface. Interestingly, the morphology of the polymers induces a 'liquid bridge' between the liquid phase and the hot wall, through which heat is transported with high (liquid-like) thermal conductivity.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CRYOGENICS  
dc.subject
HEAT FLUX  
dc.subject
INTERFACE  
dc.subject
MOLECULAR DYNAMICS  
dc.subject
NANO-CHANNEL  
dc.subject
POLYMERS  
dc.subject
POOL BOILING  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Heat flow through a liquid-vapor interface in a nano-channel: The effect of end-grafting polymers on a wall  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-11-01T11:07:16Z  
dc.journal.volume
34  
dc.journal.number
34  
dc.journal.pagination
344004-344018  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Pastorino, Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; Argentina  
dc.description.fil
Fil: Urrutia, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; Argentina  
dc.description.fil
Fil: Fiora, María. Instituto Nacional de Tecnologia Industrial. Gerencia Operativa de Desarrollo Tecnologico E Innovacion.; Argentina  
dc.description.fil
Fil: Condado, Federico. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina  
dc.journal.title
Journal of Physics: Condensed Matter  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1088/1361-648X/ac77ce