Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Detection of Wind Turbine Failures through Cross-Information between Neighbouring Turbines

Marti Puig, Pere; Cusidó, Jordi; Lozano, Francisco J.; Serra Serra, Moises; Caiafa, César FedericoIcon ; Solé Casals, Jordi
Fecha de publicación: 09/2022
Editorial: MDPI
Revista: Applied Sciences (Switzerland)
ISSN: 2076-3417
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería del Petróleo, Energía y Combustibles

Resumen

In this paper, the time variation of signals from several SCADA systems of geographically closed turbines are analysed and compared. When operating correctly, they show a clear pattern of joint variation. However, the presence of a failure in one of the turbines causes the signals from the faulty turbine to decouple from the pattern. From this information, SCADA data is used to determine, firstly, how to derive reference signals describing this pattern and, secondly, to compare the evolution of different turbines with respect to this joint variation. This makes it possible to determine whether the behaviour of the assembly is correct, because they maintain the well-functioning patterns, or whether they are decoupled. The presented strategy is very effective and can provide important support for decision making in turbine maintenance and, in the near future, to improve the classification of signals for training supervised normality models. In addition to being a very effective system, it is a low computational cost strategy, which can add great value to the SCADA data systems present in wind farms.
Palabras clave: FAULT DIAGNOSIS , FEATURE ENGINEERING , NORMAL BEHAVIOUR MODELS , RENEWABLE ENERGY , WIND TURBINE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 5.877Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/216800
URL: https://www.mdpi.com/2076-3417/12/19/9491
DOI: http://dx.doi.org/10.3390/app12199491
Colecciones
Articulos(IAR)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
Marti Puig, Pere; Cusidó, Jordi; Lozano, Francisco J.; Serra Serra, Moises; Caiafa, César Federico; et al.; Detection of Wind Turbine Failures through Cross-Information between Neighbouring Turbines; MDPI; Applied Sciences (Switzerland); 12; 19; 9-2022; 1-21
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES