Artículo
The variety of modal weak Godel algebras
Fecha de publicación:
06/2022
Editorial:
Elsevier Science
Revista:
International Journal On Fuzzy Sets And Systems
ISSN:
0165-0114
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
An algebra 〈A,∧,∨,→,□,0,1〉 of type (2,2,2,1,0,0) is said to be a modal weak Heyting algebra if 〈A,∧,∨,→,0,1〉 is a weak Heyting algebra and the following conditions are satisfied for every a,b∈A: M1) □(1)=1, M2) □(a∧b)=□(a)∧□(b) and M3) □(a→b)≤□(a)→□(b). If this algebra satisfies the inequality a∧(a→b)≤b then it is called modal RWH-algebra. In this paper we study the variety of modal RWH-algebras, which is denoted by KRWH, and some of its subvarieties. We focus our attention on the study of the lattice of congruences of any member of KRWH and some related properties. In particular, we give an equational basis for the subvariety of KRWH generated by the class of their totally ordered members.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Celani, Sergio Arturo; Nagy, Agustin Leonel; San Martín, Hernán Javier; The variety of modal weak Godel algebras; Elsevier Science; International Journal On Fuzzy Sets And Systems; 456; 6-2022; 125-143
Compartir
Altmétricas