Mostrar el registro sencillo del ítem

dc.contributor.author
Ovando, Gabriela Paola  
dc.date.available
2017-07-31T20:48:28Z  
dc.date.issued
2013-01  
dc.identifier.citation
Ovando, Gabriela Paola; Naturally reductive pseudo-riemannian 2-step nilpotent lie groups; University of Houston; Houston Journal Of Mathematics; 39; 1; 1-2013; 147-168  
dc.identifier.issn
0362-1588  
dc.identifier.uri
http://hdl.handle.net/11336/21667  
dc.description.abstract
This paper deals with naturally reductive pseudo-Riemannian 2- step nilpotent Lie groups for which the metric is invariant under a left action. The case of nondegenerate center is characterized as follows. The simply connected Lie group can be constructed starting from a real representation of a certain Lie algebra which carries an ad-invariant metric. Also a naturally reductive homogeneous structure is given and applications are shown.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
University of Houston  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Naturally Reductive Pseudo-Riemannian  
dc.subject
2-Step Nilpotent  
dc.subject
Isometry Groups  
dc.subject
Representations  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Naturally reductive pseudo-riemannian 2-step nilpotent lie groups  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-07-21T19:06:05Z  
dc.journal.volume
39  
dc.journal.number
1  
dc.journal.pagination
147-168  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Ovando, Gabriela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario; Argentina  
dc.journal.title
Houston Journal Of Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0911.4067  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.math.uh.edu/~hjm/Vol39-1.html