Artículo
On the packing chromatic number of hypercubes
Fecha de publicación:
11/2013
Editorial:
Elsevier Science
Revista:
Electronic Notes in Discrete Mathematics
ISSN:
1571-0653
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The packing chromatic number χρ(G) of a graph G is the smallest integer k needed to proper color the vertices of G in such a way that the distance in G between any two vertices having color i be at least i + 1. Goddard et al. [8] found an upper bound for the packing chromatic number of hypercubes Qn. Moreover, they compute χρ(Qn) for n ≤ 5 leaving as an open problem the remaining cases. In this paper, we obtain a better upper bound for χρ(Qn) and we compute the exact value of χρ(Qn) for 6 ≤ n ≤ 8.
Palabras clave:
Packing Chromatic Number
,
Upper Bound
,
Hypercube Graphs
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Torres, Pablo Daniel; Valencia Pabon, Mario; On the packing chromatic number of hypercubes; Elsevier Science; Electronic Notes in Discrete Mathematics; 44; 11-2013; 263-268
Compartir
Altmétricas