Artículo
Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks
Fecha de publicación:
10/2012
Editorial:
David Publishing Company
Revista:
Journal of Energy and Power Engineering
ISSN:
1934-8975
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A number of contingencies simulated during dynamic security assessment do not generate unacceptable values of power system state variables, due to their small influence on system operation. Their exclusion from the set of contingencies to be simulated in the security assessment would achieve a significant reduction in computation time. This paper defines a critical contingencies selection method for on-line dynamic security assessment. The selection method results from an off-line dynamical analysis, which covers typical scenarios and also covers various related aspects like frequency, voltage, and angle analyses among others. Indexes measured over these typical scenarios are used to train neural networks, capable of performing on-line estimation of a critical contingencies list according to the system state.
Palabras clave:
CRITICAL CONTINGENCIES
,
DYNAMIC SECURITY ASSESSMENT
,
NEURAL NETWORKS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos(CCT - SAN JUAN)
Articulos de CENTRO CIENTIFICO TECNOLOGICO CONICET - SAN JUAN
Articulos de CENTRO CIENTIFICO TECNOLOGICO CONICET - SAN JUAN
Citación
Schweickardt, Gustavo Alejandro; Gimenez Alvarez, Juan Manuel; Critical Contingencies Ranking for Dynamic Security Assessment Using Neural Networks; David Publishing Company; Journal of Energy and Power Engineering; 6; 10; 10-2012; 1663-1672
Compartir
Altmétricas