Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Enthalpy-based modeling of tomographically reconstructed quiet-Sun coronal loops

Mac Cormack, CeciliaIcon ; Lopez Fuentes, Marcelo ClaudioIcon ; Mandrini, Cristina HemilseIcon ; Lloveras, Diego GustavoIcon ; Vasquez, Alberto MarcosIcon
Fecha de publicación: 04/2022
Editorial: Elsevier
Revista: Advances in Space Research
ISSN: 0273-1177
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

The structure of the solar corona is made of magnetic flux tubes or loops. Due to the lack of contrast with their environment, observing and studying coronal loops in the quiet Sun is extremely difficult. In this work we use a differential emission measure tomographic (DEMT) technique to reconstruct, from a series of EUV images covering an entire solar rotation, the average 3D distribution of the thermal properties of the coronal plasma. By combining the DEMT products with extrapolations of the global coronal magnetic field, we reconstruct coronal loops and obtain the energy input required to keep them at the typical million-degree temperatures of the corona. We statistically study a large number of reconstructed loops for Carrington rotation (CR) 2082 obtaining a series of typical average loops of different lengths. We look for relations between the thermal properties and the lengths of the constructed typical loops and find similar results to those found in a previous work (Mac Cormack et al., 2020). We also analyze the typical loop properties by comparing them with the zero-dimensional (0D) hydrodynamic model Enthalpy-Based Thermal Evolution of Loops (EBTEL, Klimchuk et al., 2008). We explore two heating scenarios. In the first one, we apply a constant heating rate assuming that typical loops are in quasi-static equilibrium. In the second scenario we heat the plasma in the loops using short impulsive events. We find that the reconstructed typical loops are overdense with respect to quasi-static equilibrium solutions of the hydrodynamic model. Impulsive heating, on the other hand, reproduces better the observed densities and temperatures for the shorter and approximately semicircular loops. The thermal properties of longer loops cannot be correctly reproduced with the EBTEL model. We suggest that to properly assess the physical characteristics of the analyzed loops in future works, it would be necessary to use a more sophisticated 1D model, with which to study the loop temperature and density profiles and test localized heating at different locations along the loops.
Palabras clave: HYDRODYNAMICS , SUN: CORONA , SUN:UV RADIATION
Ver el registro completo
 
Archivos asociados
Tamaño: 1.246Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/216377
URL: https://linkinghub.elsevier.com/retrieve/pii/S0273117722002514
DOI: http://dx.doi.org/10.1016/j.asr.2022.04.001
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Citación
Mac Cormack, Cecilia; Lopez Fuentes, Marcelo Claudio; Mandrini, Cristina Hemilse; Lloveras, Diego Gustavo; Vasquez, Alberto Marcos; Enthalpy-based modeling of tomographically reconstructed quiet-Sun coronal loops; Elsevier; Advances in Space Research; 70; 6; 4-2022; 1570-1579
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES