Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Study of taxes, regulations and inequality using machine learning algorithms

Neñer, Julian; Cardoso, Ben-Hur Francisco; Laguna, Maria FabianaIcon ; Goncalves, Sebastián; Iglesias, José RobertoIcon
Fecha de publicación: 04/2022
Editorial: The Royal Society
Revista: Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences
ISSN: 1364-503X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Genetic machine learning (ML) algorithms to train agents in the Yard–Sale model proved very useful for finding optimal strategies that maximize their wealth. However, the main result indicates that the more significant the fraction of rational agents, the greater the inequality at the collective level. From social and economic viewpoints, this is an undesirable result since high inequality diminishes liquidity and trade. Besides, with very few exceptions, most agents end up with zero wealth, despite the inclusion of rational behaviour. To deal with this situation, here we include a taxation–redistribution mechanism in the ML algorithm. Previous results show that simple regulations can considerably reduce inequality if agents do not change their behaviour. However, when considering rational agents, different types of redistribution favour risk-averse agents, to some extent. Even so, we find that rational agents looking for optimal wealth can always arrive to an optimal risk, compatible with a particular choice of parameters, but increasing inequality. This article is part of the theme issue ‘Kinetic exchange models of societies and economies’.
Palabras clave: AGENT-BASED MODEL , ECONOPHYSICS , WEALTH DISTRIBUTION
Ver el registro completo
 
Archivos asociados
Tamaño: 1.157Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/216344
DOI: http://dx.doi.org/10.1098/rsta.2021.0165
URL: https://royalsocietypublishing.org/doi/10.1098/rsta.2021.0165
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Neñer, Julian; Cardoso, Ben-Hur Francisco; Laguna, Maria Fabiana; Goncalves, Sebastián; Iglesias, José Roberto; Study of taxes, regulations and inequality using machine learning algorithms; The Royal Society; Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences; 380; 2224; 4-2022; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES