Mostrar el registro sencillo del ítem

dc.contributor.author
Santisteban, Javier Roberto  
dc.contributor.author
Buitrago Montañez, Nayibe Lucia  
dc.contributor.author
Moya Riffo, Alvaro Esteban  
dc.contributor.author
Soria, Sergio Raul  
dc.contributor.author
Baruj, Alberto Leonardo  
dc.contributor.author
Schulz, M.  
dc.contributor.author
Grosse, M.  
dc.contributor.author
Luzin, V.  
dc.contributor.author
Hache, M.  
dc.contributor.author
Barrow, L.  
dc.contributor.author
Daymond, M. R.  
dc.date.available
2023-10-30T11:55:53Z  
dc.date.issued
2022-01  
dc.identifier.citation
Santisteban, Javier Roberto; Buitrago Montañez, Nayibe Lucia; Moya Riffo, Alvaro Esteban; Soria, Sergio Raul; Baruj, Alberto Leonardo; et al.; Diffusion of H in Zircaloy-2 and Zr-2.5%Nb rolled plates between 250 °C and 350 °C by off-situ neutron imaging experiments; Elsevier Science; Journal of Nuclear Materials; 561; 1-2022; 1-15  
dc.identifier.issn
0022-3115  
dc.identifier.uri
http://hdl.handle.net/11336/216339  
dc.description.abstract
Zirconium alloys in nuclear power plants operate in high-pressure water at temperatures between 250 and 350 °C. Hydrogen (or deuterium) ingress due to waterside corrosion and if the solubility is exceeded H precipitates as a brittle hydride phase. Degradation mechanisms involve the accumulation of these brittle hydrides at cold spots or crack tips, as a result of H redistribution in response to thermal and stress gradients, respectively. Knowledge of H diffusion coefficients at operating temperatures is central to evaluating the rate of hydride accumulation and crack growth velocity. We determine the diffusion coefficients of H in Zircaloy-2 and Zr-2.5%Nb rolled plates at 250 °C, 300 °C and 350 °C along the rolling and normal directions by neutron imaging experiments with sensitivity of 5 wt ppm H for a spatial resolution 0.04 mm × 2 mm. These values were evaluated from H concentration profiles measured at room temperature on specimens of dimensions 10×10×4 mm3 containing a hydride layer on one face, after annealing treatments between 60 and 600 min. This allowed the identification of a transition zone of 200–300 μm between the hydride layer and the Zr alloy material, composed by large, sparsely distributed hydrides. In Zircaloy-2 plates, no substantial differences were observed in H diffusion along different directions or metallurgical conditions, and diffusion coefficients (0.6 ± 0.1 10−10 m2/s at 300 °C). By contrast, in hot rolled Zr-2.5%Nb plates the diffusion along the rolling direction (5.5 ± 0.5 × 10−10 m2/s at 300 °C) was much faster than along the normal direction (2.5 ± 0.7 10−10 m2/s at 300 °C), very likely due to H diffusing along the continuous network of β filaments. After a thermal treatment of 3 h at 860 °C the plate microstructure changed generating radically changed H diffusion coefficients, resulting in H diffusion being much faster along the normal direction (4.0 ± 0.5 10−10 m2/s at 300 °C) than along the rolling direction (1.4 ± 0.5 10−10 m2/s at 300 °C).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HYDROGEN EMBRITTLEMENT  
dc.subject
NEUTRON IMAGING  
dc.subject
SOLID DIFFUSION  
dc.subject
ZIRCONIUM ALLOYS  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Diffusion of H in Zircaloy-2 and Zr-2.5%Nb rolled plates between 250 °C and 350 °C by off-situ neutron imaging experiments  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-10-26T15:16:04Z  
dc.journal.volume
561  
dc.journal.pagination
1-15  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Santisteban, Javier Roberto. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Buitrago Montañez, Nayibe Lucia. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Moya Riffo, Alvaro Esteban. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Soria, Sergio Raul. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Baruj, Alberto Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina  
dc.description.fil
Fil: Schulz, M.. Technische Universitat München; Alemania  
dc.description.fil
Fil: Grosse, M.. Institut für Angewandte Materialien; Alemania  
dc.description.fil
Fil: Luzin, V.. No especifíca;  
dc.description.fil
Fil: Hache, M.. Queens University; Canadá  
dc.description.fil
Fil: Barrow, L.. Queens University; Canadá  
dc.description.fil
Fil: Daymond, M. R.. Queens University; Canadá  
dc.journal.title
Journal of Nuclear Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022311522000435  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jnucmat.2022.153547