Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Vela pulsar: Single pulses analysis with machine learning techniques

Lousto, Carlos OscarIcon ; Missel, Ryan; Prajapati, Harshkumar; Sosa Fiscella, Sofía ValentinaIcon ; Lopez Armengol, Federico GastonIcon ; Gyawali, Prashnna Kumar; Wang, Linwei; Cahill, Nathan D.; Combi, LucianoIcon ; del Palacio, SantiagoIcon ; Combi, Jorge ArielIcon ; Gancio Gonzalez, Guillermo MatiasIcon ; García, FedericoIcon ; Gutiérrez, Eduardo MarioIcon ; Hauscarriaga, Fernando PabloIcon
Fecha de publicación: 02/2022
Editorial: Wiley Blackwell Publishing, Inc
Revista: Monthly Notices of the Royal Astronomical Society
ISSN: 0035-8711
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

We study individual pulses of Vela (PSR B0833−45/J0835−4510) from daily observations of over 3 h (around 120 000 pulses per observation), performed simultaneously with the two radio telescopes at the Argentine Institute of Radioastronomy. We select four days of observations in 2021 January to March and study their statistical properties with machine learning techniques. We first use Density-Based Spatial Clustering of Applications with Noise clustering techniques, associating pulses mainly by amplitudes, and find a correlation between higher amplitudes and earlier arrival times. We also find a weaker (polarization dependent) correlation with the mean width of the pulses. We identify clusters of the so-called mini-giant pulses, with ∼10 times the average pulse amplitude. We then perform an independent study, with Self-Organizing Maps (SOM) clustering techniques. We use Variational AutoEncoder (VAE) reconstruction of the pulses to separate them clearly from the noise and select one of the days of observation to train VAE and apply it to the rest of the observations. We use SOM to determine four clusters of pulses per day per radio telescope and conclude that our main results are robust and self-consistent. These results support models for emitting regions at different heights (separated each by roughly a hundred km) in the pulsar magnetosphere. We also model the pulses amplitude distribution with interstellar scintillation patterns at the inter-pulses time-scale finding a characterizing exponent nISS ∼ 7–10. In the appendices, we discuss independent checks of hardware systematics with the simultaneous use of the two radio telescopes in different one-polarization/two-polarizations configurations. We also provide a detailed analysis of the processes of radio-interferences cleaning and individual pulse folding.
Palabras clave: METHODS: OBSERVATIONAL , METHODS: STATISTICAL , PULSARS: INDIVIDUAL: VELA
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.146Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/216166
URL: https://academic.oup.com/mnras/article/509/4/5790/6433657
DOI: http://dx.doi.org/10.1093/mnras/stab3287
Colecciones
Articulos(IAR)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
Lousto, Carlos Oscar; Missel, Ryan; Prajapati, Harshkumar; Sosa Fiscella, Sofía Valentina; Lopez Armengol, Federico Gaston; et al.; Vela pulsar: Single pulses analysis with machine learning techniques; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 509; 4; 2-2022; 5790-5808
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES