Artículo
Plasmon-induced excitation energy transfer in silver nanoparticle dimers: A real-time TDDFTB investigation
Fecha de publicación:
04/2022
Editorial:
American Institute of Physics
Revista:
Journal of Chemical Physics
ISSN:
0021-9606
e-ISSN:
1089-7690
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Using real-time quantum dynamics calculations, we perform theoretical investigations of light-induced interactions and electronic excitation transfer in a silver nanoparticle dimer. Real-time time-dependent density functional tight-binding (RT-TDDFTB) calculations provide details of the quantum dynamical processes at an electronic/atomistic level with attosecond resolution. The computational efficiency of RT-TDDFTB allows us to examine electronic dynamics up to picosecond time scales. With time scales varying over six orders of magnitude, we provide insight into interactions between the nanoparticle and laser and between nanoparticles. Our results show that the coupling between nanoparticle monomers is dependent on the separation distance between the nanoparticles in the dimer. As the interparticle distance is varied, the dipole-dipole interactions and electronic excitation transfer mechanisms are markedly different. At large distances (from 50 to 20 Å), the energy transfer from NP1 to NP2 becomes more efficient as the interparticle distance decreases. The total dipole moment of the Ag14 nanoparticle dimer increases linearly at an interparticle distance of 20 Å and reaches its maximum after 1.2 ps. The electronic excitation transfer is also the most efficient at 20 Å. At short distances, back-transfer effects reduce the ability of the dimer and NP1 to accept energy from the incident electric field. We attribute the distance-dependent features of the nanoparticle dimer to the beating between the laser acting on NP1 and the back transfer from NP2 to NP1.
Palabras clave:
TDDFTB
,
PLASMON
,
ENERGY TRANSFER
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INFIQC)
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Citación
Liu, Zhen; Oviedo, María Belén; Wong, Bryan M.; Aikens, Christine M.; Plasmon-induced excitation energy transfer in silver nanoparticle dimers: A real-time TDDFTB investigation; American Institute of Physics; Journal of Chemical Physics; 156; 15; 4-2022; 1-44
Compartir
Altmétricas