Mostrar el registro sencillo del ítem
dc.contributor.author
Sofonea, Mircea
dc.contributor.author
Tarzia, Domingo Alberto
dc.date.available
2023-10-20T17:39:07Z
dc.date.issued
2022-07
dc.identifier.citation
Sofonea, Mircea; Tarzia, Domingo Alberto; Tykhonov well-posedness of a heat transfer problem with unilateral constraints; Acad Sciences Czech Republic; Applications Of Mathematics; 67; 2; 7-2022; 167-197
dc.identifier.issn
0862-7940
dc.identifier.uri
http://hdl.handle.net/11336/215607
dc.description.abstract
We consider an elliptic boundary value problem with unilateral constraints and subdifferential boundary conditions. The problem describes the heat transfer in a domain D ⊂ ℝd and its weak formulation is in the form of a hemivariational inequality for the temperature field, denoted by P. We associate to Problem P an optimal control problem, denoted by Q. Then, using appropriate Tykhonov triples, governed by a nonlinear operator G and a convex K˜ , we provide results concerning the well-posedness of problems P and Q. Our main results are Theorems 4.2 and 5.2, together with their corollaries. Their proofs are based on arguments of compactness, lower semicontinuity and pseudomonotonicity. Moreover, we consider three relevant perturbations of the heat transfer boundary valued problem which lead to penalty versions of Problem P, constructed with particular choices of G and K˜. We prove that Theorems 4.2 and 5.2 as well as their corollaries can be applied in the study of these problems, in order to obtain various convergence results.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Acad Sciences Czech Republic
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
35A16
dc.subject
35M86
dc.subject
49J20
dc.subject
49J40
dc.subject
49J45
dc.subject
49J52
dc.subject
APPROXIMATING SEQUENCE
dc.subject
CONVERGENCE RESULTS
dc.subject
HEAT TRANSFER PROBLEM
dc.subject
HEMIVARIATIONAL INEQUALITY
dc.subject
OPTIMAL CONTROL
dc.subject
SUBDIFFERENTIAL BOUNDARY CONDITION
dc.subject
TYKHONOV WELL-POSEDNESS
dc.subject
UNILATERAL CONSTRAINT
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Tykhonov well-posedness of a heat transfer problem with unilateral constraints
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-10-20T14:47:17Z
dc.journal.volume
67
dc.journal.number
2
dc.journal.pagination
167-197
dc.journal.pais
República Checa
dc.description.fil
Fil: Sofonea, Mircea. No especifíca;
dc.description.fil
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
dc.journal.title
Applications Of Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.21136/AM.2021.0172-20
Archivos asociados