Mostrar el registro sencillo del ítem

dc.contributor.author
Sofonea, Mircea  
dc.contributor.author
Tarzia, Domingo Alberto  
dc.date.available
2023-10-20T17:39:07Z  
dc.date.issued
2022-07  
dc.identifier.citation
Sofonea, Mircea; Tarzia, Domingo Alberto; Tykhonov well-posedness of a heat transfer problem with unilateral constraints; Acad Sciences Czech Republic; Applications Of Mathematics; 67; 2; 7-2022; 167-197  
dc.identifier.issn
0862-7940  
dc.identifier.uri
http://hdl.handle.net/11336/215607  
dc.description.abstract
We consider an elliptic boundary value problem with unilateral constraints and subdifferential boundary conditions. The problem describes the heat transfer in a domain D ⊂ ℝd and its weak formulation is in the form of a hemivariational inequality for the temperature field, denoted by P. We associate to Problem P an optimal control problem, denoted by Q. Then, using appropriate Tykhonov triples, governed by a nonlinear operator G and a convex K˜ , we provide results concerning the well-posedness of problems P and Q. Our main results are Theorems 4.2 and 5.2, together with their corollaries. Their proofs are based on arguments of compactness, lower semicontinuity and pseudomonotonicity. Moreover, we consider three relevant perturbations of the heat transfer boundary valued problem which lead to penalty versions of Problem P, constructed with particular choices of G and K˜. We prove that Theorems 4.2 and 5.2 as well as their corollaries can be applied in the study of these problems, in order to obtain various convergence results.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Acad Sciences Czech Republic  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
35A16  
dc.subject
35M86  
dc.subject
49J20  
dc.subject
49J40  
dc.subject
49J45  
dc.subject
49J52  
dc.subject
APPROXIMATING SEQUENCE  
dc.subject
CONVERGENCE RESULTS  
dc.subject
HEAT TRANSFER PROBLEM  
dc.subject
HEMIVARIATIONAL INEQUALITY  
dc.subject
OPTIMAL CONTROL  
dc.subject
SUBDIFFERENTIAL BOUNDARY CONDITION  
dc.subject
TYKHONOV WELL-POSEDNESS  
dc.subject
UNILATERAL CONSTRAINT  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Tykhonov well-posedness of a heat transfer problem with unilateral constraints  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-10-20T14:47:17Z  
dc.journal.volume
67  
dc.journal.number
2  
dc.journal.pagination
167-197  
dc.journal.pais
República Checa  
dc.description.fil
Fil: Sofonea, Mircea. No especifíca;  
dc.description.fil
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.journal.title
Applications Of Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.21136/AM.2021.0172-20