Mostrar el registro sencillo del ítem
dc.contributor.author
Panizza, Guido
dc.contributor.author
Ravazzoli, Claudia Leonor
dc.contributor.author
Camilión, Emilio
dc.date.available
2023-10-19T14:19:43Z
dc.date.issued
2022-06
dc.identifier.citation
Panizza, Guido; Ravazzoli, Claudia Leonor; Camilión, Emilio; Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina; Birkhauser Verlag Ag; Pure And Applied Geophysics; 179; 6-7; 6-2022; 2437-2460
dc.identifier.issn
0033-4553
dc.identifier.uri
http://hdl.handle.net/11336/215449
dc.description.abstract
We present an original anisotropic stress-dependent rock physics model for the organic rich shales of the Inoceramus formation, the main source rock and unconventional reservoir in the Austral Basin, Argentina. We implement a novel combination of anisotropic poroelastic theories which take into account organic matter content, lithologic description, fluid type, saturation and stress state. In this approach, we model the infill as a mixture of solid organic matter and interconnected pore fluids, using total organic carbon analysis and petrophysical data from two wells. The compliance of the matrix is considered to be stress-dependent following the porosity deformation approach (PDA). The elasticity and density of the multiminerallic saturated rock is obtained using the mineral fractions obtained from X-ray diffraction information, porosity analysis and fluid properties. This allows us to compute synthetic acoustic velocities. The calibration of the model also involved the inversion of several unknowns (the set of PDA parameters, clays and kerogen physical properties) by minimizing the misfit between modelled and ultrasonic measured velocities. Due to the lack of oblique velocity data, to complete the compliance tensor, a static-to-dynamic ratio was built for each sample, and constant anellipticity was assumed with increasing stress. The model calibrated with this innovative procedure demonstrated its usefulness to predict stiffness, compliance, and compressional and shear wave velocity variations under variable applied stress. It is also useful for the estimation of stress-related changes of porosity and Biot’s effective stress coefficients, which can be difficult to measure in shales, and therefore there are few values reported in the literature.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Birkhauser Verlag Ag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ANISOTROPY
dc.subject
INVERSION
dc.subject
POROSITY DEFORMATION APPROACH (PDA)
dc.subject
SHALE
dc.subject
SSTATIC-TO-DYNAMIC RELATION
dc.subject
STRESS DEPENDENCY
dc.subject.classification
Geoquímica y Geofísica
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Stress-Dependent Anisotropic Rock Physics Modelling in Organic Shales of the Inoceramus Formation, Austral Basin, Argentina
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-10-17T13:12:25Z
dc.journal.volume
179
dc.journal.number
6-7
dc.journal.pagination
2437-2460
dc.journal.pais
Suiza
dc.description.fil
Fil: Panizza, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. YPF - Tecnología; Argentina
dc.description.fil
Fil: Ravazzoli, Claudia Leonor. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.description.fil
Fil: Camilión, Emilio. YPF - Tecnología; Argentina
dc.journal.title
Pure And Applied Geophysics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00024-022-03049-1
Archivos asociados