Mostrar el registro sencillo del ítem

dc.contributor.author
Bustamante, Carlos Mauricio  
dc.contributor.author
Scherlis Perel, Damian Ariel  
dc.date.available
2023-10-17T14:04:57Z  
dc.date.issued
2021-12  
dc.identifier.citation
Bustamante, Carlos Mauricio; Scherlis Perel, Damian Ariel; Doping and coupling strength in molecular conductors: Polyacetylene as a case study; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 23; 47; 12-2021; 26974-26980  
dc.identifier.issn
1463-9076  
dc.identifier.uri
http://hdl.handle.net/11336/215177  
dc.description.abstract
The doping mechanisms responsible for elevating the currents up to eleven orders of magnitude in semiconducting polymer films are today well characterized. Doping can also improve the performance of nanoscale devices or single molecule conductors, but the mechanism in this case appears to be different, with theoretical studies suggesting that the dopant affects the electronic properties of the junctions. In the present report, multiscale time-dependent DFT transport simulations help clarify the way in which n-type doping can raise the current flowing through a polymer chain connected to a pair of electrodes, with the focus on polyacetylene. In particular, our multiscale methodology offers control over the magnitude of the chemical coupling between the molecule and the electrodes, which allows us to analyze the effect of doping in low and strong coupling regimes. Interestingly, our results establish that the impact of dopants is the highest in weakly coupled devices, while their presence tends to be irrelevant in low-resistance junctions. Our calculations point out that both the equalization of the frontier orbitals with the Fermi level and a small gap between the HOMO and the LUMO must result from doping in order to observe any significant increase of the currents.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ELECTRONIC TRANSPORT  
dc.subject
QUANTUM DYNAMICS  
dc.subject
DOPING  
dc.subject
DENSITY FUNCTIONAL THEORY  
dc.subject.classification
Física Atómica, Molecular y Química  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Doping and coupling strength in molecular conductors: Polyacetylene as a case study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-10-17T09:51:51Z  
dc.journal.volume
23  
dc.journal.number
47  
dc.journal.pagination
26974-26980  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Bustamante, Carlos Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.journal.title
Physical Chemistry Chemical Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/d1cp04728k