Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Exp2GO: Improving Prediction of Functions in the Gene Ontology with Expression Data

Di Persia, Leandro EzequielIcon ; Lopez, Tiago; Arce, Agustín LucasIcon ; Milone, Diego HumbertoIcon ; Stegmayer, GeorginaIcon
Fecha de publicación: 04/2022
Editorial: Institute of Electrical and Electronics Engineers
Revista: Ieee-acm Transactions On Computational Biology And Bioinformatics
ISSN: 1545-5963
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

The computational methods for the prediction of gene function annotations aim to automatically find associations between a gene and a set of Gene Ontology (GO) terms describing its functions. Since the hand-made curation process of novel annotations and the corresponding wet experiments validations are very time-consuming and costly procedures, there is a need for computational tools that can reliably predict likely annotations and boost the discovery of new gene functions. This work proposes a novel method for predicting annotations based on the inference of GO similarities from expression similarities. The novel method was benchmarked against other methods on several public biological datasets, obtaining the best comparative results. exp2GO effectively improved the prediction of GO annotations in comparison to state-of-the-art methods. Furthermore, the proposal was validated with a full genome case where it was capable of predicting relevant and accurate biological functions. The repository of this project withh full data and code is available at https://github.com/sinc-lab/exp2GO.
Palabras clave: BAYESIAN INFERENCE , GENE FUNCTION PREDICTION , GENE ONTOLOGY , NON NEGATIVE MATRIX FACTORIZATION , SEMANTIC DISTANCE
Ver el registro completo
 
Archivos asociados
Tamaño: 3.124Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/215069
URL: https://ieeexplore.ieee.org/document/9756915
DOI: http://dx.doi.org/10.1109/TCBB.2022.3167245
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Di Persia, Leandro Ezequiel; Lopez, Tiago; Arce, Agustín Lucas; Milone, Diego Humberto; Stegmayer, Georgina; Exp2GO: Improving Prediction of Functions in the Gene Ontology with Expression Data; Institute of Electrical and Electronics Engineers; Ieee-acm Transactions On Computational Biology And Bioinformatics; 20; 2; 4-2022; 999-1008
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES