Mostrar el registro sencillo del ítem
dc.contributor.author
Diaz, Valeria
dc.contributor.author
Rodríguez, Guillermo Horacio
dc.date.available
2023-10-12T13:17:54Z
dc.date.issued
2022-03
dc.identifier.citation
Diaz, Valeria; Rodríguez, Guillermo Horacio; Machine Learning for Detection of Cognitive Impairment; Budapest Tech; Acta Polytechnica Hungarica; 19; 5; 3-2022; 195-213
dc.identifier.issn
1785-8860
dc.identifier.uri
http://hdl.handle.net/11336/214993
dc.description.abstract
The detection of cognitive problems, especially in the early stages, is critical and the method by which it is diagnosed is manual and depends on one or more specialist doctors, to diagnose it as the cognitive decline escalates into the early stage of dementia, e.g., Alzheimer's disease (AD). The early stages of AD are very similar to Mild Cognitive Impairment (MCI); it is essential to identify the possible factors associated with the disease. This research aims to demonstrate that automated models can differentiate and classify MCI and AD in the early stages. The present research used a combination of Machine Learning (ML) algorithms to identify AD, using gene expressions. The algorithms used for the classification of cognitive problems and healthy people (control) were: Linear Regression, Decision Trees (DT), Naîve Bayes (NB) and Deep Learning (DP). The result of this research shows ML algorithms can identify AD, in early stages, with an 80% accuracy, using a Deep Learning (DL) algorithm.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Budapest Tech
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MACHINE LEARNING
dc.subject
ALZHEIMER DISEASE
dc.subject
IMPAIRMENT
dc.subject
MILD COGNITIVE
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Machine Learning for Detection of Cognitive Impairment
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T22:27:48Z
dc.journal.volume
19
dc.journal.number
5
dc.journal.pagination
195-213
dc.journal.pais
Hungría
dc.journal.ciudad
Budapest
dc.description.fil
Fil: Diaz, Valeria. Universidad de Palermo. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Rodríguez, Guillermo Horacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.journal.title
Acta Polytechnica Hungarica
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://acta.uni-obuda.hu/Issue123.htm
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://acta.uni-obuda.hu/Diaz_Rodriguez_123.pdf
Archivos asociados