Mostrar el registro sencillo del ítem

dc.contributor.author
Diaz, Valeria  
dc.contributor.author
Rodríguez, Guillermo Horacio  
dc.date.available
2023-10-12T13:17:54Z  
dc.date.issued
2022-03  
dc.identifier.citation
Diaz, Valeria; Rodríguez, Guillermo Horacio; Machine Learning for Detection of Cognitive Impairment; Budapest Tech; Acta Polytechnica Hungarica; 19; 5; 3-2022; 195-213  
dc.identifier.issn
1785-8860  
dc.identifier.uri
http://hdl.handle.net/11336/214993  
dc.description.abstract
The detection of cognitive problems, especially in the early stages, is critical and the method by which it is diagnosed is manual and depends on one or more specialist doctors, to diagnose it as the cognitive decline escalates into the early stage of dementia, e.g., Alzheimer's disease (AD). The early stages of AD are very similar to Mild Cognitive Impairment (MCI); it is essential to identify the possible factors associated with the disease. This research aims to demonstrate that automated models can differentiate and classify MCI and AD in the early stages. The present research used a combination of Machine Learning (ML) algorithms to identify AD, using gene expressions. The algorithms used for the classification of cognitive problems and healthy people (control) were: Linear Regression, Decision Trees (DT), Naîve Bayes (NB) and Deep Learning (DP). The result of this research shows ML algorithms can identify AD, in early stages, with an 80% accuracy, using a Deep Learning (DL) algorithm.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Budapest Tech  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MACHINE LEARNING  
dc.subject
ALZHEIMER DISEASE  
dc.subject
IMPAIRMENT  
dc.subject
MILD COGNITIVE  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Machine Learning for Detection of Cognitive Impairment  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T22:27:48Z  
dc.journal.volume
19  
dc.journal.number
5  
dc.journal.pagination
195-213  
dc.journal.pais
Hungría  
dc.journal.ciudad
Budapest  
dc.description.fil
Fil: Diaz, Valeria. Universidad de Palermo. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Rodríguez, Guillermo Horacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
Acta Polytechnica Hungarica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://acta.uni-obuda.hu/Issue123.htm  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://acta.uni-obuda.hu/Diaz_Rodriguez_123.pdf