Artículo
Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form
Fecha de publicación:
05/2022
Editorial:
Springer
Revista:
Acta Applicandae Mathematicae
ISSN:
0167-8019
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let G be the manifold of all (unparametrized) oriented lines of R3. We study the controllability of the control system in G given by the condition that a curve in G describes at each instant, at the infinitesimal level, an helicoid with prescribed angular speed α. Actually, we pose the analogous more general problem by means of a control system on the manifold Gκ of all the oriented complete geodesics of the three dimensional space form of curvature κ: R3 for κ= 0 , S3 for κ= 1 and hyperbolic 3-space for κ= − 1. We obtain that the system is controllable if and only if α2≠ κ. In the spherical case with α= ± 1 , an admissible curve remains in the set of fibers of a fixed Hopf fibration of S3. We also address and solve a sort of Kendall’s (aka Oxford) problem in this setting: Finding the minimum number of switches of piecewise continuous curves joining two arbitrary oriented lines, with pieces in some distinguished families of admissible curves.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Anarella, Mateo; Salvai, Marcos Luis; Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form; Springer; Acta Applicandae Mathematicae; 179; 1; 5-2022; 1-19
Compartir
Altmétricas