Mostrar el registro sencillo del ítem

dc.contributor.author
Ruiz, Juan Jose  
dc.contributor.author
Ailliot, Pierre  
dc.contributor.author
Chau, Thi Tuyet Trang  
dc.contributor.author
Le Bras, Pierre  
dc.contributor.author
Monbet, Valérie  
dc.contributor.author
Sévellec, Florian  
dc.contributor.author
Tandeo, Pierre  
dc.date.available
2023-10-09T20:16:16Z  
dc.date.issued
2022-09  
dc.identifier.citation
Ruiz, Juan Jose; Ailliot, Pierre; Chau, Thi Tuyet Trang; Le Bras, Pierre; Monbet, Valérie; et al.; Analog data assimilation for the selection of suitable general circulation models; Copernicus Publications; Geoscientific Model Development; 15; 18; 9-2022; 7203-7220  
dc.identifier.issn
1991-959X  
dc.identifier.uri
http://hdl.handle.net/11336/214642  
dc.description.abstract
Data assimilation is a relevant framework to merge a dynamical model with noisy observations. When various models are in competition, the question is to find the model that best matches the observations. This matching can be measured by using the model evidence, defined by the likelihood of the observations given the model. This study explores the performance of model selection based on model evidence computed using data-driven data assimilation, where dynamical models are emulated using machine learning methods. In this work, the methodology is tested with the three-variable Lorenz model and with an intermediate complexity atmospheric general circulation model (a.k.a. the SPEEDY model). Numerical experiments show that the data-driven implementation of the model selection algorithm performs as well as the one that uses the dynamical model. The technique is able to select the best model among a set of possible models and also to characterize the spatiotemporal variability of the model sensitivity. Moreover, the technique is able to detect differences among models in terms of local dynamics in both time and space which are not reflected in the first two moments of the climatological probability distribution. This suggests the implementation of this technique using available long-term observations and model simulations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Copernicus Publications  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Analog regression  
dc.subject
Machine learning  
dc.subject
Model validation  
dc.subject
Data assimilation  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Analog data assimilation for the selection of suitable general circulation models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T22:24:18Z  
dc.identifier.eissn
1991-9603  
dc.journal.volume
15  
dc.journal.number
18  
dc.journal.pagination
7203-7220  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina  
dc.description.fil
Fil: Ailliot, Pierre. Laboratoire de Mathématiques de Bretagne Atlantique; Francia  
dc.description.fil
Fil: Chau, Thi Tuyet Trang. Laboratoire Des Sciences Du Climat Et de L'environnement; Francia  
dc.description.fil
Fil: Le Bras, Pierre. Institut Universitaire Européen de la Mer; Francia. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; Francia  
dc.description.fil
Fil: Monbet, Valérie. Universite de Rennes I; Francia. Institut National de Recherche en Informatique et en Automatique; Francia  
dc.description.fil
Fil: Sévellec, Florian. Institut Universitaire Européen de la Mer; Francia. University of Southampton; Reino Unido  
dc.description.fil
Fil: Tandeo, Pierre. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; Francia  
dc.journal.title
Geoscientific Model Development  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://gmd.copernicus.org/articles/15/7203/2022/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.5194/gmd-15-7203-2022