Mostrar el registro sencillo del ítem
dc.contributor.author
Gaggion Zulpo, Rafael Nicolás
dc.contributor.author
Mansilla, Lucas Andrés
dc.contributor.author
Mosquera, Candelaria
dc.contributor.author
Milone, Diego Humberto
dc.contributor.author
Ferrante, Enzo
dc.date.available
2023-10-09T12:22:36Z
dc.date.issued
2022-12
dc.identifier.citation
Gaggion Zulpo, Rafael Nicolás; Mansilla, Lucas Andrés; Mosquera, Candelaria; Milone, Diego Humberto; Ferrante, Enzo; Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis; Institute of Electrical and Electronics Engineers; IEEE Transaction on Medical Imaging; 42; 2; 12-2022; 546-556
dc.identifier.issn
0278-0062
dc.identifier.uri
http://hdl.handle.net/11336/214488
dc.description.abstract
Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each other, thus ignoring topological errors and anatomical inconsistencies. We address this limitation by moving from pixel-level to graph representations, which allow to naturally incorporate anatomical constraints by construction. To this end, we introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures. We also propose a novel image-to-graph skip connection layer which allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy. The proposed architecture is extensively evaluated in a variety of domain shift and image occlusion scenarios, and audited considering different types of demographic domain shift. Our comprehensive experimental setup compares HybridGNet with other landmark and pixel-based models for anatomical segmentation in chest x-ray images, and shows that it produces anatomically plausible results in challenging scenarios where other models tend to fail.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ANATOMICALLY PLAUSIBLE SEGMENTATION
dc.subject
GRAPH CONVOLUTIONAL NEURAL NETWORKS
dc.subject
GRAPH GENERATIVE MODELS
dc.subject
LANDMARK BASED SEGMENTATION
dc.subject
LOCALIZED SKIP CONNECTIONS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-08-07T14:57:35Z
dc.journal.volume
42
dc.journal.number
2
dc.journal.pagination
546-556
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Gaggion Zulpo, Rafael Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Mansilla, Lucas Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Mosquera, Candelaria. Universidad Tecnológica Nacional; Argentina. Hospital Italiano; Argentina
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.journal.title
IEEE Transaction on Medical Imaging
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9963582/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TMI.2022.3224660
Archivos asociados