Mostrar el registro sencillo del ítem

dc.contributor.author
Gaggion Zulpo, Rafael Nicolás  
dc.contributor.author
Mansilla, Lucas Andrés  
dc.contributor.author
Mosquera, Candelaria  
dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Ferrante, Enzo  
dc.date.available
2023-10-09T12:22:36Z  
dc.date.issued
2022-12  
dc.identifier.citation
Gaggion Zulpo, Rafael Nicolás; Mansilla, Lucas Andrés; Mosquera, Candelaria; Milone, Diego Humberto; Ferrante, Enzo; Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis; Institute of Electrical and Electronics Engineers; IEEE Transaction on Medical Imaging; 42; 2; 12-2022; 546-556  
dc.identifier.issn
0278-0062  
dc.identifier.uri
http://hdl.handle.net/11336/214488  
dc.description.abstract
Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each other, thus ignoring topological errors and anatomical inconsistencies. We address this limitation by moving from pixel-level to graph representations, which allow to naturally incorporate anatomical constraints by construction. To this end, we introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures. We also propose a novel image-to-graph skip connection layer which allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy. The proposed architecture is extensively evaluated in a variety of domain shift and image occlusion scenarios, and audited considering different types of demographic domain shift. Our comprehensive experimental setup compares HybridGNet with other landmark and pixel-based models for anatomical segmentation in chest x-ray images, and shows that it produces anatomically plausible results in challenging scenarios where other models tend to fail.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ANATOMICALLY PLAUSIBLE SEGMENTATION  
dc.subject
GRAPH CONVOLUTIONAL NEURAL NETWORKS  
dc.subject
GRAPH GENERATIVE MODELS  
dc.subject
LANDMARK BASED SEGMENTATION  
dc.subject
LOCALIZED SKIP CONNECTIONS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-08-07T14:57:35Z  
dc.journal.volume
42  
dc.journal.number
2  
dc.journal.pagination
546-556  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Gaggion Zulpo, Rafael Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Mansilla, Lucas Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Mosquera, Candelaria. Universidad Tecnológica Nacional; Argentina. Hospital Italiano; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.journal.title
IEEE Transaction on Medical Imaging  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9963582/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TMI.2022.3224660