Mostrar el registro sencillo del ítem

dc.contributor.author
Merk, Timon  
dc.contributor.author
Peterson, Victoria  
dc.contributor.author
Lipski, Witold J.  
dc.contributor.author
Blankertz, Benjamin  
dc.contributor.author
Turner, Robert S.  
dc.contributor.author
Li, Ningfei  
dc.contributor.author
Horn, Andreas  
dc.contributor.author
Richardson, Robert Mark  
dc.contributor.author
Neumann, Wolf-Julian  
dc.date.available
2023-10-09T12:12:14Z  
dc.date.issued
2022-05  
dc.identifier.citation
Merk, Timon; Peterson, Victoria; Lipski, Witold J.; Blankertz, Benjamin; Turner, Robert S.; et al.; Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease; eLife Sciences Publications; eLife; 11; 5-2022; 1-27  
dc.identifier.issn
2050-084X  
dc.identifier.uri
http://hdl.handle.net/11336/214465  
dc.description.abstract
Brain signal decoding promises significant advances in the development of clinical brain computer interfaces (BCI). In Parkinson’s disease (PD), first bidirectional BCI implants for adaptive deep brain stimulation (DBS) are now available. Brain signal decoding can extend the clinical utility of adaptive DBS but the impact of neural source, computational methods and PD pathophysiology on decoding performance are unknown. This represents an unmet need for the development of future neurotechnology. To address this, we developed an invasive brain-signal decoding approach based on intraoperative sensorimotor electrocorticography (ECoG) and subthalamic LFP to predict grip-force, a representative movement decoding application, in 11 PD patients undergoing DBS. We demonstrate that ECoG is superior to subthalamic LFP for accurate grip-force decoding. Gradient boosted decision trees (XGBOOST) outperformed other model architectures. ECoG based decoding performance negatively correlated with motor impairment, which could be attributed to subthalamic beta bursts in the motor preparation and movement period. This highlights the impact of PD pathophysiology on the neural capacity to encode movement vigor. Finally, we developed a connectomic analysis that could predict grip-force decoding performance of individual ECoG channels across patients by using their connectomic fingerprints. Our study provides a neurophysiological and computational framework for invasive brain signal decoding to aid the development of an individualized precision-medicine approach to intelligent adaptive DBS.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
eLife Sciences Publications  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BASAL GANGLIA  
dc.subject
COMPUTATIONAL BIOLOGY  
dc.subject
DEEP BRAIN STIMULATION  
dc.subject
HUMAN  
dc.subject
MACHINE LEARNING  
dc.subject
NEUROMODULATION  
dc.subject
NEUROSCIENCE  
dc.subject
SYSTEMS BIOLOGY  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T21:58:21Z  
dc.journal.volume
11  
dc.journal.pagination
1-27  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Merk, Timon. Charité – Universitätsmedizin Berlin; Alemania  
dc.description.fil
Fil: Peterson, Victoria. Harvard Medical School; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Lipski, Witold J.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados Unidos  
dc.description.fil
Fil: Blankertz, Benjamin. Technische Universität Berln; Alemania  
dc.description.fil
Fil: Turner, Robert S.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados Unidos  
dc.description.fil
Fil: Li, Ningfei. Charité Universitätsmedizin Berlin; Alemania  
dc.description.fil
Fil: Horn, Andreas. Charité Universitätsmedizin Berlin; Alemania  
dc.description.fil
Fil: Richardson, Robert Mark. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Neumann, Wolf-Julian. Charité Universitätsmedizin Berlin; Alemania  
dc.journal.title
eLife  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.7554/eLife.75126